Brain Imaging and Behavior

, Volume 12, Issue 2, pp 345–356 | Cite as

Abnormal brain white matter network in young smokers: a graph theory analysis study

Original Research
  • 329 Downloads

Abstract

Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in some specific fiber bundles in smokers. However, little is known about the changes in topological organization of WM structural network in young smokers. In current study, we acquired DTI datasets from 58 male young smokers and 51 matched nonsmokers and constructed the WM networks by the deterministic fiber tracking approach. Graph theoretical analysis was used to compare the topological parameters of WM network (global and nodal) and the inter-regional fractional anisotropy (FA) weighted WM connections between groups. The results demonstrated that both young smokers and nonsmokers had small-world topology in WM network. Further analysis revealed that the young smokers exhibited the abnormal topological organization, i.e., increased network strength, global efficiency, and decreased shortest path length. In addition, the increased nodal efficiency predominately was located in frontal cortex, striatum and anterior cingulate gyrus (ACG) in smokers. Moreover, based on network-based statistic (NBS) approach, the significant increased FA-weighted WM connections were mainly found in the PFC, ACG and supplementary motor area (SMA) regions. Meanwhile, the network parameters were correlated with the nicotine dependence severity (FTND) scores, and the nodal efficiency of orbitofrontal cortex was positive correlation with the cigarette per day (CPD) in young smokers. We revealed the abnormal topological organization of WM network in young smokers, which may improve our understanding of the neural mechanism of young smokers form WM topological organization level.

Keywords

Young smokers White matter (WM) Diffusion tensor imaging (DTI) Graph theory analysis (GTA) 

Notes

Acknowledgements

This paper is supported by the Project for the National Natural Science Foundation of China under Grant nos. 81571751, 81571753, 61502376, 81401478, 81401488, 81470816, 61431013, 81471737, 81301281, 81271644, 81271546, 81271549, the Natural Science Basic Research Plan in Shaanxi Province of China under Grant no. 2014JQ4118, and the Fundamental Research Funds for the Central Universities under the Grant nos. JBG151207, JB161201 JB151204, JB121405, the Natural Science Foundation of Inner Mongolia under Grant no. 2014BS0610, the Innovation Fund Project of Inner Mongolia University of Science and Technology Nos. 2015QNGG03, 2014QDL002, General Financial Grant the China Post- doctoral Science Foundation under Grant no.2014 M552416.

Compliance with ethical standards

Ethical statements

Informed consent was obtained from all individual participants included in the study.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards

Conflict of interest

The authors declare that we have no conflict of interest.

References

  1. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3, e17.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Almeida, O. P., Garrido, G. J., Lautenschlager, N. T., Hulse, G. K., Jamrozik, K., & Flicker, L. (2008). Smoking is associated with reduced cortical regional gray matter density in brain regions associated with incipient Alzheimer disease. The American Journal of Geriatric Psychiatry, 16, 92–98.CrossRefPubMedGoogle Scholar
  3. Baler, R. D., & Volkow, N. D. (2006). Drug addiction: The neurobiology of disrupted self-control. Trends in Molecular Medicine, 12, 559–566.CrossRefPubMedGoogle Scholar
  4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D.-U. (2006). Complex networks: Structure and dynamics. Physics Reports, 424, 175–308.CrossRefGoogle Scholar
  5. Brody, A. L., Mandelkern, M. A., Lee, G., Smith, E., Sadeghi, M., Saxena, S., Jarvik, M. E., & London, E. D. (2004). Attenuation of cue-induced cigarette craving and anterior cingulate cortex activation in bupropion-treated smokers: A preliminary study. Psychiatry Research: Neuroimaging, 130, 269–281.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bruni, J. E., & Montemurro, D. G. (2009). Human neuroanatomy: A text, brain atlas, and laboratory dissection guide. USA: Oxford University Press.Google Scholar
  7. Bruno, J., Hosseini, S. H., & Kesler, S. (2012). Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiology of Disease, 48, 329–338.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186–198.CrossRefPubMedGoogle Scholar
  9. Butts, C. T. (2009). Revisiting the foundations of network analysis. Science, 325, 414–416.CrossRefPubMedGoogle Scholar
  10. Cai, C., Yuan, K., Yin, J., Feng, D., Bi, Y., Li, Y., Yu, D., Jin, C., Wei, Q., & Tian, J. (2016). Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder. Brain Imaging and Behavior, 10, 1–9.CrossRefGoogle Scholar
  11. Cui, Z., Zhong, S., Xu, P., He, Y., Gong, G., 2013. PANDA: A pipeline toolbox for analyzing brain diffusion images.Google Scholar
  12. Fagerström, K.-O. (1978). Measuring degree of physical dependence to tobacco smoking with reference to individualization of treatment. Addictive Behaviors, 3, 235–241.CrossRefPubMedGoogle Scholar
  13. Feng, D., Yuan, K., Li, Y., Cai, C., Yin, J., Bi, Y., Cheng, J., Guan, Y., Shi, S., & Yu, D. (2015). Intra-regional and inter-regional abnormalities and cognitive control deficits in young adult smokers. Brain Imaging and Behavior, 1–11.Google Scholar
  14. Fornito, A., Zalesky, A., Bullmore, E., 2016. Fundamentals of brain network analysis. Academic Press.Google Scholar
  15. Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., & Beaulieu, C. (2009b). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19, 524–536.CrossRefPubMedGoogle Scholar
  16. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6, e159.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & FAGERSTROM, K. O. (1991). The Fagerström test for nicotine dependence: A revision of the Fagerstrom tolerance questionnaire. British Journal of Addiction, 86, 1119–1127.CrossRefPubMedGoogle Scholar
  18. Hoeft, F., Barneagoraly, N., Haas, B. W., Golarai, G., Ng, D., Mills, D., Korenberg, J., Bellugi, U., Galaburda, A., & Reiss, A. L. (2007). More is not always better: Increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 27, 11960–11965.CrossRefGoogle Scholar
  19. Hudkins, M., O’Neill, J., Tobias, M. C., Bartzokis, G., & London, E. D. (2012). Cigarette smoking and white matter microstructure. Psychopharmacology, 221, 285–295.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Humphries, M. D., Gurney, K., & Prescott, T. J. (2005). Is there an integrative center in the vertebrate brain-stem? A robotic evaluation of a model of the reticular formation viewed as an action selection device. Adaptive Behavior, 13, 97–113.CrossRefGoogle Scholar
  21. Jacobsen, L. K., Giedd, J. N., Gottschalk, C., Kosten, T. R., & Krystal, J. H. (2001). Quantitative morphology of the caudate and putamen in patients with cocaine dependence. American Journal of Psychiatry, 158, 486–489.CrossRefPubMedGoogle Scholar
  22. Jacobsen, L. K., Picciotto, M. R., Heath, C. J., Frost, S. J., Tsou, K. A., Dwan, R. A., Jackowski, M. P., Constable, R. T., & Mencl, W. E. (2007). Prenatal and adolescent exposure to tobacco smoke modulates the development of white matter microstructure. The Journal of Neuroscience, 27, 13491–13498.CrossRefPubMedGoogle Scholar
  23. Jasinska, A. J., Zorick, T., Brody, A. L., & Stein, E. A. (2014). Dual role of nicotine in addiction and cognition: A review of neuroimaging studies in humans. Neuropharmacology, 84, 111–122.CrossRefPubMedGoogle Scholar
  24. Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: A pathology of motivation and choice. American Journal of Psychiatry, 162, 1403–1413.CrossRefPubMedGoogle Scholar
  25. Kim, D.-J., Skosnik, P. D., Cheng, H., Pruce, B. J., Brumbaugh, M. S., Vollmer, J. M., Hetrick, W. P., O'Donnell, B. F., Sporns, O., & Puce, A. (2011). Structural network topology revealed by white matter tractography in cannabis users: A graph theoretical analysis. Brain Connectivity, 1, 473–483.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Koehler, S., Hasselmann, E., Wüstenberg, T., Heinz, A., & Romanczuk-Seiferth, N. (2015). Higher volume of ventral striatum and right prefrontal cortex in pathological gambling. Brain Structure and Function, 220, 469–477.CrossRefPubMedGoogle Scholar
  27. Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35, 217–238.CrossRefPubMedGoogle Scholar
  28. Kringelbach, M. L. (2005). The human orbitofrontal cortex: Linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691–702.CrossRefPubMedGoogle Scholar
  29. Kühn, S., Schubert, F., & Gallinat, J. (2010). Reduced thickness of medial orbitofrontal cortex in smokers. Biological Psychiatry, 68, 1061–1065.CrossRefPubMedGoogle Scholar
  30. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87, 198701.CrossRefPubMedGoogle Scholar
  31. Le Bihan, D. (2003). Looking into the functional architecture of the brain with diffusion MRI. Nature Reviews Neuroscience, 4, 469–480.CrossRefPubMedGoogle Scholar
  32. Li, Y., Yuan, K., Cai, C., Feng, D., Yin, J., Bi, Y., Shi, S., Yu, D., Jin, C., & von Deneen, K. M. (2015). Reduced frontal cortical thickness and increased caudate volume within fronto-striatal circuits in young adult smokers. Drug and Alcohol Dependence, 151, 211–219.CrossRefPubMedGoogle Scholar
  33. Liao, Y., Tang, J., Deng, Q., Deng, Y., Luo, T., Wang, X., Chen, H., Liu, T., Chen, X., & Brody, A. L. (2011). Bilateral fronto-parietal integrity in young chronic cigarette smokers: A diffusion tensor imaging study. PloS One, 6, e26460.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Limbrick-Oldfield, E. H., van Holst, R. J., & Clark, L. (2013). Fronto-striatal dysregulation in drug addiction and pathological gambling: Consistent inconsistencies? Neuro Image: Clinical, 2, 385–393.Google Scholar
  35. Lin, F., Wu, G., Zhu, L., & Lei, H. (2015). Altered brain functional networks in heavy smokers. Addiction Biology, 20, 809–819.CrossRefPubMedGoogle Scholar
  36. Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness, V. S., & Pandya, D. N. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15, 854–869.CrossRefPubMedGoogle Scholar
  37. Maslov, S., & Sneppen, K. (2002). Specificity and stability in topology of protein networks. Science, 296, 910–913.CrossRefPubMedGoogle Scholar
  38. Mori, S., 2013. MRI atlas of human white matter -, S. Wakana.Google Scholar
  39. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefPubMedGoogle Scholar
  40. Paul, R. H., Grieve, S. M., Niaura, R., David, S. P., Laidlaw, D. H., Cohen, R., Sweet, L., Taylor, G., Clark, C. R., & Pogun, S. (2008). Chronic cigarette smoking and the microstructural integrity of white matter in healthy adults: A diffusion tensor imaging study. Nicotine & Tobacco Research, 10, 137–147.CrossRefGoogle Scholar
  41. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. NeuroImage, 52, 1059–1069.CrossRefPubMedGoogle Scholar
  42. Shu, N., Liu, Y., Li, J., Li, Y., Yu, C., & Jiang, T. (2009). Altered anatomical network in early blindness revealed by diffusion tensor tractography. PloS One, 4, e7228.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Shu, N., Liu, Y., Li, K., Duan, Y., Wang, J., Yu, C., Dong, H., Ye, J., & He, Y. (2011). Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cerebral Cortex, 21, 2565–2577.CrossRefPubMedGoogle Scholar
  44. Sporns, O. (2011). The human connectome: A complex network. Annals of the New York Academy of Sciences, 1224, 109–125.CrossRefPubMedGoogle Scholar
  45. Sun, Y., Wang, G.B., Lin, Q.X., Lu, L., Shu, N., Meng, S.Q., Wang, J., Han, H.B., He, Y., Shi, J., 2015. Disrupted white matter structural connectivity in heroin abusers. Addiction biology.Google Scholar
  46. Tuch, D. S., Wedeen, V. J., Dale, A. M., George, J. S., & Belliveau, J. W. (2001). Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proceedings of the National Academy of Sciences, 98, 11697–11701.CrossRefGoogle Scholar
  47. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393, 440–442.CrossRefPubMedGoogle Scholar
  48. Wise, R. A. (2009). Roles for nigrostriatal—Not just mesocorticolimbic—Dopamine in reward and addiction. Trends in Neurosciences, 32, 517–524.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wylie, K. P., Rojas, D. C., Tanabe, J., Martin, L. F., & Tregellas, J. R. (2012). Nicotine increases brain functional network efficiency. NeuroImage, 63, 73–80.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yu, D., Yuan, K., Zhang, B., Liu, J., Dong, M., Jin, C., Luo, L., Zhai, J., Zhao, L., Zhao, Y., 2015. White matter integrity in young smokers: A tract-based spatial statistics study. Addiction biology.Google Scholar
  51. Yuan, K., Yu, D., Bi, Y., Li, Y., Guan, Y., Liu, J., Zhang, Y., Qin, W., Lu, X., Tian, J., 2016. The implication of frontostriatal circuits in young smokers: A resting-state study. Human brain mapping.Google Scholar
  52. Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., & Bullmore, E. T. (2010). Whole-brain anatomical networks: Does the choice of nodes matter? NeuroImage, 50, 970–983.CrossRefPubMedGoogle Scholar
  53. Zhang, J., Wang, J., Wu, Q., Kuang, W., Huang, X., He, Y., & Gong, Q. (2011a). Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biological Psychiatry, 70, 334–342.CrossRefPubMedGoogle Scholar
  54. Zhang, X., Salmeron, B. J., Ross, T. J., Geng, X., Yang, Y., & Stein, E. A. (2011b). Factors underlying prefrontal and insula structural alterations in smokers. NeuroImage, 54, 42–48.CrossRefPubMedGoogle Scholar
  55. Zhang, R., Jiang, G., Tian, J., Qiu, Y., Wen, X., Zalesky, A., Li, M., Ma, X., Wang, J., & Li, S. (2015). Abnormal white matter structural networks characterize heroin-dependent individuals: A network analysis. Addiction Biology. doi: 10.1111/adb.12234.Google Scholar
  56. Zhang, R., Jiang, G., Tian, J., Qiu, Y., Wen, X., Zalesky, A., Li, M., Ma, X., Wang, J., & Li, S. (2016). Abnormal white matter structural networks characterize heroin-dependent individuals: A network analysis. Addiction Biology, 21, 667.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yajuan Zhang
    • 1
    • 2
  • Min Li
    • 1
    • 2
  • Ruonan Wang
    • 1
    • 2
  • Yanzhi Bi
    • 1
    • 2
  • Yangding Li
    • 4
  • Zhang Yi
    • 1
    • 2
  • Jixin Liu
    • 1
    • 2
  • Dahua Yu
    • 3
  • Kai Yuan
    • 1
    • 2
    • 3
  1. 1.School of Life Science and TechnologyXidian UniversityXi’an ShaanxiPeople’s Republic of China
  2. 2.Engineering Research Center of Molecular and Neuro Imaging, Ministry of EducationXi’anPeople’s Republic of China
  3. 3.Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, Information Processing Laboratory, School of Information EngineeringInner Mongolia University of Science and TechnologyBaotouPeople’s Republic of China
  4. 4.Guangxi Key Laboratory of the Multi-source Information Mining and SecurityGuangxi Normal UniversityGulinPeople’s Republic of China

Personalised recommendations