Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 2, pp 369–382 | Cite as

Brain functional connectivity in lung cancer population: an exploratory study

  • M. Simó
  • X. Rifà-Ros
  • L. Vaquero
  • P. Ripollés
  • N. Cayuela
  • J. Jové
  • A. Navarro
  • F. Cardenal
  • J. Bruna
  • Antoni Rodríguez-Fornells
Original Research

Abstract

The present study aimed to explore the functional connectivity differences in Resting State Networks (RSNs) induced by cancer and chemotherapy in Lung Cancer (LC) patients using an Independent Component Analysis (ICA). Three matched groups of 15 LC patients following Chemotherapy (C+), 15 LC patients before Chemotherapy (C-) and 15 Healthy Controls (HC) were included. Analysis was performed using ICA and a multivariate pattern analysis (MVPA) to classify groups based on profiles of functional connectivity. We found significant differences in four of the RSN identified: Default Mode Network (DMN), Predominantly Left and Right Anterior Temporal Network, and Cerebellum Network. Whereas DMN showed decreased connectivity, the other RSNs exhibited increased connectivity in both LC groups compared to HC and in C+ in comparison to C-. MVPA discriminated significantly and accurately between all groups. Our study showed that disrupted functional connectivity associated with cancer and chemotherapy-induced cognitive deficits is not only related to DMN decreased connectivity abnormalities but also to an increased connectivity of other RSNs, suggesting a potential compensatory mechanism.

Graphical abstract

Keywords

Resting-state functional magnetic resonance imaging Chemotherapy Lung cancer Default mode network Functional connectivity 

Notes

Compliance with ethical standards

Funding

This work was supported by la Fundació Marató-TV3 [Acquired Spinal Cord and Brain Injuries Program (2012–2015) awarded to ARF] and Hospital of Bellvitge Research Award 2016. Marta Simó is a recipient of a Juan Rodés contract from the Carlos III National Health Institute (Spanish Government)- European Social Fund (ESF).

Conflicts of interest

All the signing authors have seen and approved the manuscript content and there is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2017_9697_Fig5_ESM.gif (89 kb)
Supplementary Figure 1 Overlapping functional and structural results between C+ and HC in right temporal regions. Significant differences between groups are reported at a FWE-corrected threshold at voxel level but displayed on a t-map and superimposed on a standardized T1 template using MNI coordinates at an uncorrected p ˂ 0.001 with a cluster extent of 20 voxels. Structural T1-Voxel-Based Morphometry (dark blue color) and Fractional Anisotropy-Voxel-Based Analysis (green color) results (Simo et al. 2015) are overlapped with the present functional connectivity results (red color). Overlap between structural maps occurred in insular regions and overlap between structural and functional occurred in middle temporal gyrus. ILF: inferior longitudinal fasciculus. MTG: middle temporal gyrus. (GIF 89 kb)
11682_2017_9697_MOESM1_ESM.tif (2.7 mb)
High resolution image (TIFF 2787 kb)

References

  1. Abou-Elseoud, A., et al. (2010). The effect of model order selection in group PICA. Human Brain Mapping, 31(8), 1207–1216. doi: 10.1002/hbm.20929.PubMedGoogle Scholar
  2. Ahles, T. A., & Saykin, A. J. (2002). Breast cancer chemotherapy-related cognitive dysfunction. Clinical Breast Cancer, 3(Suppl 3), S84–S90.CrossRefPubMedGoogle Scholar
  3. Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nature Reviews. Cancer, 7(3), 192–201. doi: 10.1038/nrc2073.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ahles, T. A., et al. (2002). Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. Journal of Clinical Oncology, 20(2), 485–493.CrossRefPubMedGoogle Scholar
  5. Altman, D. G. (1999). Practical statistics for medical research. New York: Chapman & Hall/CRC Press.Google Scholar
  6. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. doi: 10.1016/j.neuroimage.2007.07.007.CrossRefPubMedGoogle Scholar
  7. Beckmann, C. F., et al. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 1001–1013. doi: 10.1098/rstb.2005.1634.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.CrossRefPubMedGoogle Scholar
  9. Bruno, J., et al. (2012). Altered resting state functional brain network topology in chemotherapy-treated breast cancer survivors. Neurobiology of Disease, 48(3), 329–338. doi: 10.1016/j.nbd.2012.07.009.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Buckner, R. L., et al. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. doi: 10.1196/annals.1440.011.CrossRefPubMedGoogle Scholar
  11. Calhoun, V. D., et al. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151.CrossRefPubMedGoogle Scholar
  12. Challis, E., et al. (2015). Gaussian process classification of Alzheimer's disease and mild cognitive impairment from resting-state fMRI. NeuroImage, 112, 232–243. doi: 10.1016/j.neuroimage.2015.02.037.CrossRefPubMedGoogle Scholar
  13. Church, J. A., et al. (2009). Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain, 132(Pt 1), 225–238. doi: 10.1093/brain/awn223.CrossRefPubMedGoogle Scholar
  14. Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1), 37–46.CrossRefGoogle Scholar
  15. Correa, D. D., et al. (2013). A prospective evaluation of changes in brain structure and cognitive functions in adult stem cell transplant recipients. Brain Imaging and Behavior. doi: 10.1007/s11682-013-9221-8.PubMedPubMedCentralGoogle Scholar
  16. Damoiseaux, J. S. (2012). Resting-state fMRI as a biomarker for Alzheimer's disease? Alzheimer's Research & Therapy, 4(2), 8. doi: 10.1186/alzrt106.CrossRefGoogle Scholar
  17. Damoiseaux, J. S., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853. doi: 10.1073/pnas.0601417103.CrossRefPubMedPubMedCentralGoogle Scholar
  18. De Luca, M., et al. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage, 29(4), 1359–1367. doi: 10.1016/j.neuroimage.2005.08.035.CrossRefPubMedGoogle Scholar
  19. Dickerson, B. C., et al. (2004). Medial temporal lobe function and structure in mild cognitive impairment. Annals of Neurology, 56(1), 27–35. doi: 10.1002/ana.20163.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dietrich, J., et al. (2006). CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. Journal of Biology, 5(7), 22. doi: 10.1186/jbiol50.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dumas, J. A., et al. (2013). Chemotherapy altered brain functional connectivity in women with breast cancer: A pilot study. Brain Imaging and Behavior, 7(4), 524–532. doi: 10.1007/s11682-013-9244-1.CrossRefPubMedGoogle Scholar
  22. Duzel, E., et al. (2009). Functional imaging of the human dopaminergic midbrain. Trends in Neurosciences, 32(6), 321–328. doi: 10.1016/j.tins.2009.02.005.CrossRefPubMedGoogle Scholar
  23. Eichenbaum, H., et al. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152. doi: 10.1146/annurev.neuro.30.051606.094328.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.CrossRefGoogle Scholar
  25. Franco, A. R., et al. (2009). Interrater and intermethod reliability of default mode network selection. Human Brain Mapping, 30(7), 2293–2303. doi: 10.1002/hbm.20668.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gour, N., et al. (2011). Basal functional connectivity within the anterior temporal network is associated with performance on declarative memory tasks. NeuroImage, 58(2), 687–697. doi: 10.1016/j.neuroimage.2011.05.090.CrossRefPubMedGoogle Scholar
  27. Gour, N., et al. (2014). Functional connectivity changes differ in early and late-onset Alzheimer's disease. Hum Brain Mapp, 35(7), 2978–2994. doi:  10.1002/hbm.22379.
  28. Grosshans, D. R., et al. (2008). Neurocognitive function in patients with small cell lung cancer : Effect of prophylactic cranial irradiation. Cancer, 112(3), 589–595. doi: 10.1002/cncr.23222.CrossRefPubMedGoogle Scholar
  29. Hampson, J. P., et al. (2015). Altered resting brain connectivity in persistent cancer related fatigue. Neuroimage Clinic, 8, 305–313. doi: 10.1016/j.nicl.2015.04.022.CrossRefGoogle Scholar
  30. Hillary, F. G., et al. (2015). Hyperconnectivity is a fundamental response to neurological disruption. Neuropsychology, 29(1), 59–75. doi:  10.1037/neu0000110.
  31. Himberg, J., et al. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. NeuroImage, 22(3), 1214–1222. doi: 10.1016/j.neuroimage.2004.03.027.CrossRefPubMedGoogle Scholar
  32. Horky, L. L., et al. (2014). Systemic chemotherapy decreases brain glucose metabolism. Annals of Clinical Translational Neurology, 1(10), 788–798. doi: 10.1002/acn3.121.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jim, H. S., et al. (2012). Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. Journal of Clinical Oncology, 30(29), 3578–3587. doi: 10.1200/JCO.2011.39.5640.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kaasa, S., et al. (1988a). Neuropsychological evaluation of patients with inoperable non-small cell lung cancer treated with combination chemotherapy or radiotherapy. Acta Oncologica, 27(3), 241–246.CrossRefPubMedGoogle Scholar
  35. Kaasa, S., et al. (1988b). Reduced short-term neuropsychological performance in patients with nonsmall-cell lung cancer treated with cisplatin and etoposide. Antibiotics and Chemotherapy, 41, 226–231.CrossRefPubMedGoogle Scholar
  36. Kesler, S. R. (2014). Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiology of Aging, 35(Suppl 2), S11–S19. doi: 10.1016/j.neurobiolaging.2014.03.036.CrossRefPubMedGoogle Scholar
  37. Kesler, S. R., et al. (2013). Default mode network connectivity distinguishes chemotherapy-treated breast cancer survivors from controls. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 11600–11605. doi: 10.1073/pnas.1214551110.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kiviniemi, V., et al. (2009). Functional segmentation of the brain cortex using high model order group PICA. Human Brain Mapping, 30(12), 3865–3886. doi: 10.1002/hbm.20813.CrossRefPubMedGoogle Scholar
  39. Komaki, R., et al. (1995). Evaluation of cognitive function in patients with limited small cell lung cancer prior to and shortly following prophylactic cranial irradiation. International Journal of Radiation Oncology, Biology, Physics, 33(1), 179–182. doi: 10.1016/0360-3016(95)00026-U.CrossRefPubMedGoogle Scholar
  40. LaViolette, P., Collier, W., Schmainda, K. M., Piacentine, L., Douville, K. L., Chitambar, C. R., Tran, A., Claesges, S. A., Durgerian, S. J., & Bloom, A.S. (2009). International Society for Magnetic Resonance Medicine (ISMRM), Honolulu, HI, USA. In http://cds.ismrm.org/. Functional Connectivity and Arterial Spin Labeling in Chemotherapy Induced Cognitive Impairment (“Chemobrain”). International Society for Magnetic Resonance Medicine (ISMRM).
  41. Lee, M. H., et al. (2013). Resting-state fMRI: A review of methods and clinical applications. AJNR. American Journal of Neuroradiology, 34(10), 1866–1872. doi: 10.3174/ajnr.A3263.CrossRefPubMedGoogle Scholar
  42. Lynall, M. E., et al. (2010). Functional connectivity and brain networks in schizophrenia. The Journal of Neuroscience, 30(28), 9477–9487. doi: 10.1523/JNEUROSCI.0333-10.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Marquand, A., et al. (2010). Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage, 49(3), 2178–2189. doi: 10.1016/j.neuroimage.2009.10.072.CrossRefPubMedGoogle Scholar
  44. Mattis, S. (1988). Dementia rating scale: Professinal manual. Odessa: Psychological Assessment Resources.Google Scholar
  45. Mourao-Miranda, J., et al. (2005). Classifying brain states and determining the discriminating activation patterns: Support vector machine on functional MRI data. NeuroImage, 28(4), 980–995. doi: 10.1016/j.neuroimage.2005.06.070.CrossRefPubMedGoogle Scholar
  46. O'Reilly, J. X., et al. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20(4), 953–965. doi: 10.1093/cercor/bhp157.CrossRefPubMedGoogle Scholar
  47. Piccirillo, J. F., et al. (2015). Cognitive impairment after chemotherapy related to atypical network architecture for executive control. Oncology, 88(6), 360–368. doi: 10.1159/000370117.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Raichle, M. E. (2011). The restless brain. Brain Connectivity, 1(1), 3–12. doi: 10.1089/brain.2011.0019.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sanz-Arigita, E. J., et al. (2010). Loss of 'small-world' networks in Alzheimer's disease: Graph analysis of FMRI resting-state functional connectivity. PloS One, 5(11), e13788. doi: 10.1371/journal.pone.0013788.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schrouff, J., et al. (2013). PRoNTo: Pattern recognition for neuroimaging toolbox. Neuroinformatics, 11(3), 319–337. doi: 10.1007/s12021-013-9178-1.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sheline, Y. I., et al. (2010). Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biological Psychiatry, 67(6), 584–587. doi: 10.1016/j.biopsych.2009.08.024.CrossRefPubMedGoogle Scholar
  52. Shilling, V., et al. (2005). The effects of adjuvant chemotherapy on cognition in women with breast cancer--preliminary results of an observational longitudinal study. Breast, 14(2), 142–150. doi: 10.1016/j.breast.2004.10.004.CrossRefPubMedGoogle Scholar
  53. Simo, M., et al. (2013). Chemobrain: A systematic review of structural and functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(8), 1311–1321. doi: 10.1016/j.neubiorev.2013.04.015.CrossRefPubMedGoogle Scholar
  54. Simo, M., et al. (2015). Cognitive and brain structural changes in a lung cancer population. Journal of Thoracic Oncology, 10(1), 38–45. doi: 10.1097/JTO.0000000000000345.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Simo, M., et al. (2016a). Longitudinal brain changes associated with prophylactic cranial irradiation in lung cancer. Journal of Thoracic Oncology, 11(4), 475–486. doi: 10.1016/j.jtho.2015.12.110.CrossRefPubMedGoogle Scholar
  56. Simo, M., et al. (2016b). Longitudinal brain changes associated with prophylactic cranial irradiation in lung cancer. Journal of Thoracic Oncology. doi: 10.1016/j.jtho.2015.12.110.PubMedGoogle Scholar
  57. Smith, S. M., et al. (2009). Correspondence of the brain's functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045. doi: 10.1073/pnas.0905267106.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sperling, R. (2007). Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer's disease. Annals of the New York Academy of Sciences, 1097, 146–155. doi: 10.1196/annals.1379.009.CrossRefPubMedGoogle Scholar
  59. Spreng, R. N., & Schacter, D. L. (2012). Default network modulation and large-scale network interactivity in healthy young and old adults. Cerebral Cortex, 22(11), 2610–2621. doi: 10.1093/cercor/bhr339.CrossRefPubMedGoogle Scholar
  60. Tate, R. F. (1954). Correlation between a discrete and a continuous variable point-biserial correlation. The Annals of Mathematical Statistics, 25(3), 603–607.CrossRefGoogle Scholar
  61. Wang, J., et al. (2010). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4, 16. doi: 10.3389/fnsys.2010.00016.PubMedPubMedCentralGoogle Scholar
  62. Wefel, J. S., et al. (2004). The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: Results of a prospective, randomized, longitudinal trial. Cancer, 100(11), 2292–2299. doi: 10.1002/cncr.20272.CrossRefPubMedGoogle Scholar
  63. Welzel, T., et al. (2008). Diffusion tensor imaging screening of radiation-induced changes in the white matter after prophylactic cranial irradiation of patients with small cell lung cancer: First results of a prospective study. AJNR. American Journal of Neuroradiology, 29(2), 379–383. doi: 10.3174/ajnr.A0797.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. Simó
    • 1
    • 2
  • X. Rifà-Ros
    • 1
    • 3
  • L. Vaquero
    • 1
  • P. Ripollés
    • 1
    • 3
  • N. Cayuela
    • 2
  • J. Jové
    • 4
  • A. Navarro
    • 5
  • F. Cardenal
    • 6
  • J. Bruna
    • 2
  • Antoni Rodríguez-Fornells
    • 1
    • 3
    • 7
  1. 1.Cognition and Brain Plasticity GroupBellvitge Biomedical Research Institute-IDIBELLBarcelonaSpain
  2. 2.Neuro-Oncology UnitHospital Universitari de Bellvitge-ICO L’Hospitalet-IDIBELLBarcelonaSpain
  3. 3.Department of Basic Psychology, Campus BellvitgeUniversity of BarcelonaBarcelonaSpain
  4. 4.Radiation Oncology DepartmentHospital Germans Trias i Pujol, ICO BadalonaBarcelonaSpain
  5. 5.Lung Cancer Unit, Radiation Oncology DepartmentICO L’HospitaletBarcelonaSpain
  6. 6.Lung Cancer Unit, Medical Oncology DepartmentICO L’HospitaletBarcelonaSpain
  7. 7.Catalan Institution for Research and Advanced StudiesICREABarcelonaSpain

Personalised recommendations