Brain Imaging and Behavior

, Volume 12, Issue 1, pp 201–216 | Cite as

Cocaine differentially affects synaptic activity in memory and midbrain areas of female and male rats: an in vivo MEMRI study

  • Pablo D. Perez
  • Gabrielle Hall
  • Jasenka Zubcevic
  • Marcelo Febo
Original Research

Abstract

Manganese enhanced magnetic resonance imaging (MEMRI) has been previously used to determine the effect of acute cocaine on calcium-dependent synaptic activity in male rats. However, there have been no MEMRI studies examining sex differences in the functional neural circuits affected by repeated cocaine. In the present study, we used MEMRI to investigate the effects of repeated cocaine on brain activation in female and male rats. Adult female and male rats were scanned at 4.7 Tesla three days after final treatment with saline, a single cocaine injection (15 mg kg−1, i.p. × 1 day) or repeated cocaine injections (15 mg kg−1, i.p. × 10 days). A day before imaging rats were provided with an i.p. injection of manganese chloride (70 mg kg−1). Cocaine produced effects on MEMRI activity that were dependent on sex. In females, we observed that a single cocaine injection reduced MEMRI activity in hippocampal CA3, ventral tegmental area (VTA), and median Raphé, whereas repeated cocaine increased MEMRI activity in dentate gyrus and interpeduncular nucleus. In males, repeated cocaine reduced MEMRI activity in VTA. Overall, it appeared that female rats showed a general trend towards increase MEMRI activity with single cocaine and reduced activity with repeated exposure, while male rats showed a trend towards opposite effects. Our results provide evidence for sex differences in the in vivo neural response to cocaine, which involves primarily hippocampal, amygdala and midbrain areas.

Keywords

Addiction Cocaine Manganese MEMRI Sex differences Synaptic activity 

Notes

Acknowledgements

This work was supported by NIH grant DA038009, DA019946 and the University of Florida McKnight Brain Foundation. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies. Authors acknowledge the support from the National High Magnetic Field Laboratory’s Advanced Magnetic Resonance Imaging & Spectroscopy (AMRIS) Facility (National Science Foundation Cooperative Agreement No. DMR-1157490 and the State of Florida). PDP is currently in the Department of Biomedical Engineering at Penn State University.

Compliance with ethical standards

Funding

This study was funded by NIH grants DA019946 and DA038009 to Dr. Marcelo Febo.

Conflict of interest

There are no conflict of interests.

Ethical approval of the use of animals in research

The University of Florida Institutional Animal Care and Use Committee approved the experimental protocols. All procedures adhered to the Guide for the Care and Use of Laboratory Animals (8th Edition, 2011), National Institutes of Health and the American Association for Laboratory Animal Science.

Ethical approval for human subjects

Does not apply.

Informed consent

Does not apply.

Disclosure

The authors have no commercial, financial, or other conflict of interests that influenced the present work.

Supplementary material

11682_2017_9691_Fig8_ESM.gif (2.2 mb)
Online Supporting Figure 1

The panel of figures on top show individual MEMRI scans of female and male rats. Images were first processed (see Materials and Methods) and are presented here in color. Color pixel values are all set at a lower threshold of −3 and upper threshold of +3. Empty squares highlight the dorsal hippocampal area. Bottom panel shows raw brain multislice multiecho scans at the level of the midbrain with the pituitary gland indicated by blue arrows. (GIF 2263 kb)

11682_2017_9691_MOESM1_ESM.tif (3.8 mb)
High Resolution Image (TIFF 3849 kb)
11682_2017_9691_Fig9_ESM.gif (43 kb)
Online Supporting Figure 2

Areas of the brain showing greater MEMRI activity female versus male rats. Data presented as Tukey box and whisker plots (median, 25-75th percentile and 1.5 interquartile range). *Significant difference between male and female. (GIF 42 kb)

11682_2017_9691_MOESM2_ESM.tiff (291 kb)
High Resolution Image (TIFF 291 kb)

References

  1. Aoki, I., Tanaka, C., Takegami, T., Ebisu, T., Umeda, M., Fukunaga, M., Fukuda, K., Silva, A. C., Koretsky, A. P., & Naruse, S. (2002). Dynamic activity-induced manganese-dependent contrast magnetic resonance imaging (DAIM MRI). Magnetic Resonance in Medicine, 48, 927–933.CrossRefPubMedGoogle Scholar
  2. Aschner, M., & Gannon, M. (1994). Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Research Bulletin, 33, 345–349.CrossRefPubMedGoogle Scholar
  3. Barrot, M. (2015). Ineffective VTA disinhibition in protracted opiate withdrawal. Trends in Neurosciences, 38, 672–673.CrossRefPubMedGoogle Scholar
  4. Chiu, C. H., Siow, T. Y., Weng, S. J., Hsu, Y. H., Huang, Y. S., Chang, K. W., Cheng, C. Y., & Ma, K. H. (2015). Effect of MDMA-induced Axotomy on the dorsal raphe forebrain tract in rats: an in vivo manganese-enhanced magnetic resonance imaging study. PloS One, 10, e0138431.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Clayton, J. A., & Collins, F. S. (2014). Policy: NIH to balance sex in cell and animal studies. Nature, 509, 282–283.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dong, Y., Saal, D., Thomas, M., Faust, R., Bonci, A., Robinson, T., & Malenka, R. C. (2004). Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(−/−) mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 14282–14287.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Dudek, M., Abo-Ramadan, U., Hermann, D., Brown, M., Canals, S., Sommer, W. H., & Hyytia, P. (2015). Brain activation induced by voluntary alcohol and saccharin drinking in rats assessed with manganese-enhanced magnetic resonance imaging. Addiction Biology, 20, 1012–1021.CrossRefPubMedGoogle Scholar
  8. Duong, T. Q., Silva, A. C., Lee, S. P., & Kim, S. G. (2000). Functional MRI of calcium-dependent synaptic activity: cross correlation with CBF and BOLD measurements. Magnetic Resonance in Medicine, 43, 383–392.CrossRefPubMedGoogle Scholar
  9. Febo, M., & Segarra, A. C. (2004). Cocaine alters GABA(B)-mediated G-protein activation in the ventral tegmental area of female rats: modulation by estrogen. Synapse, 54, 30–36.CrossRefPubMedGoogle Scholar
  10. Febo, M., Gonzalez-Rodriguez, L. A., Capo-Ramos, D. E., Gonzalez-Segarra, N. Y., & Segarra, A. C. (2003). Estrogen-dependent alterations in D2/D3-induced G protein activation in cocaine-sensitized female rats. Journal of Neurochemistry, 86, 405–412.CrossRefPubMedGoogle Scholar
  11. Febo, M., Ferris, C. F., & Segarra, A. C. (2005a). Estrogen influences cocaine-induced blood oxygen level-dependent signal changes in female rats. The Journal of Neuroscience, 25, 1132–1136.CrossRefPubMedGoogle Scholar
  12. Febo, M., Segarra, A. C., Nair, G., Schmidt, K., Duong, T. Q., & Ferris, C. F. (2005b). The neural consequences of repeated cocaine exposure revealed by functional MRI in awake rats. Neuropsychopharmacology, 30, 936–943.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Feltenstein, M. W., Henderson, A. R., & See, R. E. (2011). Enhancement of cue-induced reinstatement of cocaine-seeking in rats by yohimbine: sex differences and the role of the estrous cycle. Psychopharmacology, 216, 53–62.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Festa, E. D., Russo, S. J., Gazi, F. M., Niyomchai, T., Kemen, L. M., Lin, S. N., Foltz, R., Jenab, S., & Quinones-Jenab, V. (2004). Sex differences in cocaine-induced behavioral responses, pharmacokinetics, and monoamine levels. Neuropharmacology, 46, 672–687.CrossRefPubMedGoogle Scholar
  15. Fukuda, J., & Kawa, K. (1977). Permeation of manganese, cadmium, zinc, and beryllium through calcium channels of an insect muscle membrane. Science, 196, 309–311.CrossRefPubMedGoogle Scholar
  16. Gallagher, J. J., Zhang, X., Ziomek, G. J., Jacobs, R. E., & Bearer, E. L. (2012). Deficits in axonal transport in hippocampal-based circuitry and the visual pathway in APP knock-out animals witnessed by manganese enhanced MRI. NeuroImage, 60, 1856–1866.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Glick, S. D., Hinds, P. A., & Shapiro, R. M. (1983). Cocaine-induced rotation: sex-dependent differences between left- and right-sided rats. Science, 221, 775–777.CrossRefPubMedGoogle Scholar
  18. Gu, H., Salmeron, B. J., Ross, T. J., Geng, X., Zhan, W., Stein, E. A., & Yang, Y. (2010). Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. NeuroImage, 53, 593–601.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Horvath, T. L., Diano, S., Sakamoto, H., Shughrue, P. J., & Merchenthaler, I. (1999). Estrogen receptor beta and progesterone receptor mRNA in the intergeniculate leaflet of the female rat. Brain Research, 844, 196–200.CrossRefPubMedGoogle Scholar
  20. Hsu, Y. H., Chen, C. C., Zechariah, A., Yen, C. C., Yang, L. C., & Chang, C. (2008). Neuronal dysfunction of a long projecting multisynaptic pathway in response to methamphetamine using manganese-enhanced MRI. Psychopharmacology, 196, 543–553.CrossRefPubMedGoogle Scholar
  21. Hu, M., & Becker, J. B. (2003). Effects of sex and estrogen on behavioral sensitization to cocaine in rats. The Journal of Neuroscience, 23, 693–699.CrossRefPubMedGoogle Scholar
  22. Hu, M., Crombag, H. S., Robinson, T. E., & Becker, J. B. (2004a). Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology, 29, 81–85.CrossRefPubMedGoogle Scholar
  23. Hu, X. T., Basu, S., & White, F. J. (2004b). Repeated cocaine administration suppresses HVA-Ca2+ potentials and enhances activity of K+ channels in rat nucleus accumbens neurons. Journal of Neurophysiology, 92, 1597–1607.CrossRefPubMedGoogle Scholar
  24. Hu, Y., Salmeron, B. J., Gu, H., Stein, E. A., & Yang, Y. (2015). Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry, 72, 584–592.CrossRefPubMedGoogle Scholar
  25. Huang, G. Z., & Woolley, C. S. (2012). Estradiol acutely suppresses inhibition in the hippocampus through a sex-specific endocannabinoid and mGluR-dependent mechanism. Neuron, 74, 801–808.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Ingram, S. L., Prasad, B. M., & Amara, S. G. (2002). Dopamine transporter-mediated conductances increase excitability of midbrain dopamine neurons. Nature Neuroscience, 5, 971–978.CrossRefPubMedGoogle Scholar
  27. Inoue, T., Majid, T., & Pautler, R. G. (2011). Manganese enhanced MRI (MEMRI): neurophysiological applications. Reviews in the Neurosciences, 22, 675–694.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17, 825–841.CrossRefPubMedGoogle Scholar
  29. Kamii, H., Kurosawa, R., Taoka, N., Shinohara, F., Minami, M., & Kaneda, K. (2015). Intrinsic membrane plasticity via increased persistent sodium conductance of cholinergic neurons in the rat laterodorsal tegmental nucleus contributes to cocaine-induced addictive behavior. The European Journal of Neuroscience, 41, 1126–1138.CrossRefPubMedGoogle Scholar
  30. Kaufling, J., & Aston-Jones, G. (2015). Persistent adaptations in afferents to ventral tegmental dopamine neurons after opiate withdrawal. The Journal of Neuroscience, 35, 10290–10303.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kaufman, M. J., Levin, J. M., Maas, L. C., Kukes, T. J., Villafuerte, R. A., Dostal, K., Lukas, S. E., Mendelson, J. H., Cohen, B. M., & Renshaw, P. F. (2001). Cocaine-induced cerebral vasoconstriction differs as a function of sex and menstrual cycle phase. Biological Psychiatry, 49, 774–781.CrossRefPubMedGoogle Scholar
  32. Kennedy, A. P., Epstein, D. H., Phillips, K. A., & Preston, K. L. (2013). Sex differences in cocaine/heroin users: drug-use triggers and craving in daily life. Drug and Alcohol Dependence, 132, 29–37.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kerstetter, K. A., Ballis, M. A., Duffin-Lutgen, S., Carr, A. E., Behrens, A. M., & Kippin, T. E. (2012). Sex differences in selecting between food and cocaine reinforcement are mediated by estrogen. Neuropsychopharmacology, 37, 2605–2614.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kim, J., Choi, I. Y., Michaelis, M. L., & Lee, P. (2011). Quantitative in vivo measurement of early axonal transport deficits in a triple transgenic mouse model of Alzheimer's disease using manganese-enhanced MRI. NeuroImage, 56, 1286–1292.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kimura, T., Yamashita, S., Fukuda, T., Park, J. M., Murayama, M., Mizoroki, T., Yoshiike, Y., Sahara, N., & Takashima, A. (2007). Hyperphosphorylated tau in parahippocampal cortex impairs place learning in aged mice expressing wild-type human tau. The EMBO Journal, 26, 5143–5152.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Larson, E. B., & Carroll, M. E. (2007). Estrogen receptor beta, but not alpha, mediates estrogen's effect on cocaine-induced reinstatement of extinguished cocaine-seeking behavior in ovariectomized female rats. Neuropsychopharmacology, 32, 1334–1345.CrossRefPubMedGoogle Scholar
  37. Lee, J. H., Silva, A. C., Merkle, H., & Koretsky, A. P. (2005). Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose-dependent and temporal evolution of T1 contrast. Magnetic Resonance in Medicine, 53, 640–648.CrossRefPubMedGoogle Scholar
  38. Lejuez, C. W., Bornovalova, M. A., Reynolds, E. K., Daughters, S. B., & Curtin, J. J. (2007). Risk factors in the relationship between gender and crack/cocaine. Experimental and Clinical Psychopharmacology, 15, 165–175.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Leranth, C., Shanabrough, M., & Horvath, T. L. (1999). Estrogen receptor-alpha in the raphe serotonergic and supramammillary area calretinin-containing neurons of the female rat. Experimental Brain Research, 128, 417–420.CrossRefPubMedGoogle Scholar
  40. Li, C. S., Kosten, T. R., & Sinha, R. (2005). Sex differences in brain activation during stress imagery in abstinent cocaine users: a functional magnetic resonance imaging study. Biological Psychiatry, 57, 487–494.CrossRefPubMedGoogle Scholar
  41. London, R. E., Toney, G., Gabel, S. A., & Funk, A. (1989). Magnetic resonance imaging studies of the brains of anesthetized rats treated with manganese chloride. Brain Research Bulletin, 23, 229–235.CrossRefPubMedGoogle Scholar
  42. Lu, H., Xi, Z. X., Gitajn, L., Rea, W., Yang, Y., & Stein, E. A. (2007). Cocaine-induced brain activation detected by dynamic manganese-enhanced magnetic resonance imaging (MEMRI). Proceedings of the National Academy of Sciences of the United States of America, 104, 2489–2494.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lu, H., Chefer, S., Kurup, P. K., Guillem, K., Vaupel, D. B., Ross, T. J., Moore, A., Yang, Y., Peoples, L. L., & Stein, E. A. (2012). fMRI response in the medial prefrontal cortex predicts cocaine but not sucrose self-administration history. NeuroImage, 62, 1857–1866.CrossRefPubMedGoogle Scholar
  44. Lu, H., Zou, Q., Chefer, S., Ross, T. J., Vaupel, D. B., Guillem, K., Rea, W. P., Yang, Y., Peoples, L. L., & Stein, E. A. (2014). Abstinence from cocaine and sucrose self-administration reveals altered mesocorticolimbic circuit connectivity by resting state MRI. Brain Connectivity, 4, 499–510.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lynch, W. J., & Taylor, J. R. (2004). Sex differences in the behavioral effects of 24-h/day access to cocaine under a discrete trial procedure. Neuropsychopharmacology, 29, 943–951.CrossRefPubMedGoogle Scholar
  46. Lynch, W. J., & Taylor, J. R. (2005). Decreased motivation following cocaine self-administration under extended access conditions: effects of sex and ovarian hormones. Neuropsychopharmacology, 30, 927–935.CrossRefPubMedGoogle Scholar
  47. Lynch, W. J., Kalayasiri, R., Sughondhabirom, A., Pittman, B., Coric, V., Morgan, P. T., & Malison, R. T. (2008). Subjective responses and cardiovascular effects of self-administered cocaine in cocaine-abusing men and women. Addiction Biology, 13, 403–410.CrossRefPubMedPubMedCentralGoogle Scholar
  48. McHugh, M. J., Demers, C. H., Salmeron, B. J., Devous Sr., M. D., Stein, E. A., & Adinoff, B. (2014). Cortico-amygdala coupling as a marker of early relapse risk in cocaine-addicted individuals. Front Psychiatry, 5, 16.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Murayama, Y., Weber, B., Saleem, K. S., Augath, M., & Logothetis, N. K. (2006). Tracing neural circuits in vivo with Mn-enhanced MRI. Magnetic Resonance Imaging, 24, 349–358.CrossRefPubMedGoogle Scholar
  50. Najavits, L. M., & Lester, K. M. (2008). Gender differences in cocaine dependence. Drug and Alcohol Dependence, 97, 190–194.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Narita, K., Kawasaki, F., & Kita, H. (1990). Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Brain Research, 510, 289–295.CrossRefPubMedGoogle Scholar
  52. Nasif, F. J., Hu, X. T., & White, F. J. (2005). Repeated cocaine administration increases voltage-sensitive calcium currents in response to membrane depolarization in medial prefrontal cortex pyramidal neurons. The Journal of Neuroscience, 25, 3674–3679.CrossRefPubMedGoogle Scholar
  53. Nehlig, A., Porrino, L. J., Crane, A. M., & Sokoloff, L. (1985). Local cerebral glucose utilization in normal female rats: variations during the estrous cycle and comparison with males. Journal of Cerebral Blood Flow and Metabolism, 5, 393–400.CrossRefPubMedGoogle Scholar
  54. Oberlander, J. G., & Woolley, C. S. (2016). 17beta-estradiol acutely potentiates glutamatergic synaptic transmission in the hippocampus through distinct mechanisms in males and females. The Journal of Neuroscience, 36, 2677–2690.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Pautler, R. G., Silva, A. C., & Koretsky, A. P. (1998). In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magnetic Resonance in Medicine, 40, 740–748.CrossRefPubMedGoogle Scholar
  56. Perez, P. D., Hall, G., Kimura, T., Ren, Y., Bailey, R. M., Lewis, J., Febo, M., & Sahara, N. (2013). In vivo functional brain mapping in a conditional mouse model of human tauopathy (tauP301L) reveals reduced neural activity in memory formation structures. Molecular Neurodegeneration, 8, 9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Peris, J., Decambre, N., Coleman-Hardee, M. L., & Simpkins, J. W. (1991). Estradiol enhances behavioral sensitization to cocaine and amphetamine-stimulated striatal [3H]dopamine release. Brain Research, 566, 255–264.CrossRefPubMedGoogle Scholar
  58. Perrine, S. A., Ghoddoussi, F., Desai, K., Kohler, R. J., Eapen, A. T., Lisieski, M. J., Angoa-Perez, M., Kuhn, D. M., Bosse, K. E., Conti, A. C., Bissig, D., & Berkowitz, B. A. (2015). Cocaine-induced locomotor sensitization in rats correlates with nucleus accumbens activity on manganese-enhanced MRI. NMR in Biomedicine, 28, 1480–1488.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Potenza, M. N., Hong, K. I., Lacadie, C. M., Fulbright, R. K., Tuit, K. L., & Sinha, R. (2012). Neural correlates of stress-induced and cue-induced drug craving: influences of sex and cocaine dependence. The American Journal of Psychiatry, 169, 406–414.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Robinson, T. E., & Kolb, B. (1999). Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. The European Journal of Neuroscience, 11, 1598–1604.CrossRefPubMedGoogle Scholar
  61. Russo, S. J., Jenab, S., Fabian, S. J., Festa, E. D., Kemen, L. M., & Quinones-Jenab, V. (2003). Sex differences in the conditioned rewarding effects of cocaine. Brain Research, 970, 214–220.CrossRefPubMedGoogle Scholar
  62. Sajja, R. K., Rahman, S., & Cucullo, L. (2016). Drugs of abuse and blood-brain barrier endothelial dysfunction: a focus on the role of oxidative stress. Journal of Cerebral Blood Flow and Metabolism, 36, 539–554.CrossRefPubMedGoogle Scholar
  63. Saleem, K. S., Pauls, J. M., Augath, M., Trinath, T., Prause, B. A., Hashikawa, T., & Logothetis, N. K. (2002). Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron, 34, 685–700.CrossRefPubMedGoogle Scholar
  64. SAMHSA (2014). Substance Use and Mental Health Estimates from the 2013 National Survey on Drug Use and Health: Overview of Findings. In Substance Abuse and Mental Health Services Administration (pp. 1–8).Google Scholar
  65. Sanchis-Segura, C., & Becker, J. B. (2016). Why we should consider sex (and study sex differences) in addiction research. Addiction Biology, 21, 995–1006.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sato, S. M., Wissman, A. M., McCollum, A. F., & Woolley, C. S. (2011). Quantitative mapping of cocaine-induced DeltaFosB expression in the striatum of male and female rats. PloS One, 6, e21783.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Saunders, N. R., Dreifuss, J. J., Dziegielewska, K. M., Johansson, P. A., Habgood, M. D., Mollgard, K., et al. (2014). The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history. Frontiers in Neuroscience, 8, 404. doi: 10.3389/fnins.2014.00404.
  68. Sell, S. L., Scalzitti, J. M., Thomas, M. L., & Cunningham, K. A. (2000). Influence of ovarian hormones and estrous cycle on the behavioral response to cocaine in female rats. The Journal of Pharmacology and Experimental Therapeutics, 293, 879–886.PubMedGoogle Scholar
  69. Sell, S. L., Dillon, A. M., Cunningham, K. A., & Thomas, M. L. (2005). Estrous cycle influence on individual differences in the response to novelty and cocaine in female rats. Behavioural Brain Research, 161, 69–74.CrossRefPubMedGoogle Scholar
  70. Shughrue, P. J., & Merchenthaler, I. (2000). Evidence for novel estrogen binding sites in the rat hippocampus. Neuroscience, 99, 605–612.CrossRefPubMedGoogle Scholar
  71. Silva, A. C., Lee, J. H., Aoki, I., & Koretsky, A. P. (2004). Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations. NMR in Biomedicine, 17, 532–543.CrossRefPubMedGoogle Scholar
  72. Silva, A. C., Lee, J. H., Wu, C. W., Tucciarone, J., Pelled, G., Aoki, I., & Koretsky, A. P. (2008). Detection of cortical laminar architecture using manganese-enhanced MRI. Journal of Neuroscience Methods, 167, 246–257.CrossRefPubMedGoogle Scholar
  73. Sinha, R., Fox, H., Hong, K. I., Sofuoglu, M., Morgan, P. T., & Bergquist, K. T. (2007). Sex steroid hormones, stress response, and drug craving in cocaine-dependent women: implications for relapse susceptibility. Experimental and Clinical Psychopharmacology, 15, 445–452.CrossRefPubMedGoogle Scholar
  74. Sloot, W. N., & Gramsbergen, J. B. (1994). Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia. Brain Research, 657, 124–132.CrossRefPubMedGoogle Scholar
  75. Smith, K. D., Kallhoff, V., Zheng, H., & Pautler, R. G. (2007). In vivo axonal transport rates decrease in a mouse model of Alzheimer's disease. NeuroImage, 35, 1401–1408.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sun, N., Li, Y., Tian, S., Lei, Y., Zheng, J., Yang, J., Sui, N., Xu, L., Pei, G., Wilson, F. A., Ma, Y., Lei, H., & Hu, X. (2006). Dynamic changes in orbitofrontal neuronal activity in rats during opiate administration and withdrawal. Neuroscience, 138, 77–82.CrossRefPubMedGoogle Scholar
  77. Suzuki, H., Barros, R. P., Sugiyama, N., Krishnan, V., Yaden, B. C., Kim, H. J., Warner, M., & Gustafsson, J. A. (2013). Involvement of estrogen receptor beta in maintenance of serotonergic neurons of the dorsal raphe. Molecular Psychiatry, 18, 674–680.CrossRefPubMedGoogle Scholar
  78. Takeda, A., Ishiwatari, S., & Okada, S. (1998a). In vivo stimulation-induced release of manganese in rat amygdala. Brain Research, 811, 147–151.CrossRefPubMedGoogle Scholar
  79. Takeda, A., Kodama, Y., Ishiwatari, S., & Okada, S. (1998b). Manganese transport in the neural circuit of rat CNS. Brain Research Bulletin, 45, 149–152.CrossRefPubMedGoogle Scholar
  80. Tucker, K. A., Browndyke, J. N., Gottschalk, P. C., Cofrancesco, A. T., & Kosten, T. R. (2004). Gender-specific vulnerability for rCBF abnormalities among cocaine abusers. Neuroreport, 15, 797–801.CrossRefPubMedGoogle Scholar
  81. Ungless, M. A., Whistler, J. L., Malenka, R. C., & Bonci, A. (2001). Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature, 411, 583–587.CrossRefPubMedGoogle Scholar
  82. Volkow, N. D., Tomasi, D., Wang, G. J., Fowler, J. S., Telang, F., Goldstein, R. Z., Alia-Klein, N., & Wong, C. (2011). Reduced metabolism in brain "control networks" following cocaine-cues exposure in female cocaine abusers. PloS One, 6, e16573.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wagner, F. A., & Anthony, J. C. (2007). Male-female differences in the risk of progression from first use to dependence upon cannabis, cocaine, and alcohol. Drug and Alcohol Dependence, 86, 191–198.CrossRefPubMedGoogle Scholar
  84. Wang, L., Lu, H., Brown, P. L., Rea, W., Vaupel, B., Yang, Y., Stein, E., & Shepard, P. D. (2015a). Manganese-enhanced MRI reflects both activity-independent and activity-dependent uptake within the rat Habenulomesencephalic pathway. PloS One, 10, e0127773.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Wang, Z., Suh, J., Li, Z., Li, Y., Franklin, T., O'Brien, C., & Childress, A. R. (2015b). A hyper-connected but less efficient small-world network in the substance-dependent brain. Drug and Alcohol Dependence, 152, 102–108.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Watanabe, T., Frahm, J., & Michaelis, T. (2013). Cell layers and neuropil: contrast-enhanced MRI of mouse brain in vivo. NMR in Biomedicine, 26, 1870–1878.CrossRefPubMedGoogle Scholar
  87. Watanabe, T., Frahm, J., & Michaelis, T. (2015). Reduced intracellular mobility underlies manganese relaxivity in mouse brain in vivo: MRI at 2.35 and 9.4 T. Brain Structure & Function, 220, 1529–1538.CrossRefGoogle Scholar
  88. Wissman, A. M., McCollum, A. F., Huang, G. Z., Nikrodhanond, A. A., & Woolley, C. S. (2011). Sex differences and effects of cocaine on excitatory synapses in the nucleus accumbens. Neuropharmacology, 61, 217–227.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Wolf, M. E., & Tseng, K. Y. (2012). Calcium-permeable AMPA receptors in the VTA and nucleus accumbens after cocaine exposure: when, how, and why? Frontiers in Molecular Neuroscience, 5, 72.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Yu, X., Wadghiri, Y. Z., Sanes, D. H., & Turnbull, D. H. (2005). In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nature Neuroscience, 8, 961–968.CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zhang, X. F., Cooper, D. C., & White, F. J. (2002). Repeated cocaine treatment decreases whole-cell calcium current in rat nucleus accumbens neurons. The Journal of Pharmacology and Experimental Therapeutics, 301, 1119–1125.CrossRefPubMedGoogle Scholar
  92. Zhang, D., Yang, S., Yang, C., Jin, G., & Zhen, X. (2008). Estrogen regulates responses of dopamine neurons in the ventral tegmental area to cocaine. Psychopharmacology, 199, 625–635.CrossRefPubMedGoogle Scholar
  93. Zhao-Shea, R., Liu, L., Pang, X., Gardner, P. D., & Tapper, A. R. (2013). Activation of GABAergic neurons in the interpeduncular nucleus triggers physical nicotine withdrawal symptoms. Current Biology, 23, 2327–2335.CrossRefPubMedGoogle Scholar
  94. Zhao-Shea, R., DeGroot, S. R., Liu, L., Vallaster, M., Pang, X., Su, Q., Gao, G., Rando, O. J., Martin, G. E., George, O., Gardner, P. D., & Tapper, A. R. (2015). Increased CRF signalling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal. Nature Communications, 6, 6770.CrossRefPubMedPubMedCentralGoogle Scholar
  95. Zhou, W., Cunningham, K. A., & Thomas, M. L. (2002). Estrogen regulation of gene expression in the brain: a possible mechanism altering the response to psychostimulants in female rats. Brain Research. Molecular Brain Research, 100, 75–83.CrossRefPubMedGoogle Scholar
  96. Zhou, L., Pruitt, C., Shin, C. B., Garcia, A. D., Zavala, A. R., & See, R. E. (2014). Fos expression induced by cocaine-conditioned cues in male and female rats. Brain Structure & Function, 219, 1831–1840.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Pablo D. Perez
    • 1
  • Gabrielle Hall
    • 1
  • Jasenka Zubcevic
    • 2
  • Marcelo Febo
    • 1
    • 3
  1. 1.Department of Psychiatry, McKnight Brain Institute, College of MedicineUniversity of FloridaGainesvilleUSA
  2. 2.Department of Physiological Sciences, College of MedicineUniversity of FloridaGainesvilleUSA
  3. 3.Center for Addiction Research and Education (CARE)University of FloridaGainesvilleUSA

Personalised recommendations