Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 1, pp 258–273 | Cite as

Relation of visual creative imagery manipulation to resting-state brain oscillations

  • Yuxuan Cai
  • Delong Zhang
  • Bishan Liang
  • Zengjian Wang
  • Junchao Li
  • Zhenni Gao
  • Mengxia Gao
  • Song Chang
  • Bingqing Jiao
  • Ruiwang Huang
  • Ming Liu
Original Research

Abstract

Visual creative imagery (VCI) manipulation is the key component of visual creativity; however, it remains largely unclear how it occurs in the brain. The present study investigated the brain neural response to VCI manipulation and its relation to intrinsic brain activity. We collected functional magnetic resonance imaging (fMRI) datasets related to a VCI task and a control task as well as pre- and post-task resting states in sequential sessions. A general linear model (GLM) was subsequently used to assess the specific activation of the VCI task compared with the control task. The changes in brain oscillation amplitudes across the pre-, on-, and post-task states were measured to investigate the modulation of the VCI task. Furthermore, we applied a Granger causal analysis (GCA) to demonstrate the dynamic neural interactions that underlie the modulation effect. We determined that the VCI task specifically activated the left inferior frontal gyrus pars triangularis (IFGtriang) and the right superior frontal gyrus (SFG), as well as the temporoparietal areas, including the left inferior temporal gyrus, right precuneus, and bilateral superior parietal gyrus. Furthermore, the VCI task modulated the intrinsic brain activity of the right IFGtriang (0.01–0.08 Hz) and the left caudate nucleus (0.2–0.25 Hz). Importantly, an inhibitory effect (negative) may exist from the left SFG to the right IFGtriang in the on-VCI task state, in the frequency of 0.01–0.08 Hz, whereas this effect shifted to an excitatory effect (positive) in the subsequent post-task resting state. Taken together, the present findings provide experimental evidence for the existence of a common mechanism that governs the brain activity of many regions at resting state and whose neural activity may engage during the VCI manipulation task, which may facilitate an understanding of the neural substrate of visual creativity.

Keywords

Visual creative imagery (VCI) Functional magnetic resonance imaging (fMRI) General linear model (GLM) Brain intrinsic activity Left-over-right inhibition 

Notes

Compliance with ethical standards

Funding

This work was supported by the Natural Science Foundation of China (No. 31371049 and No. 31600907) and the Guangdong Provincial Natural Science Foundation of China (No. 2014A030310487).

Conflict of interest

The authors declare that they have no competing financial interests.

References

  1. Abraham, A., Pieritz, K., Thybusch, K., Rutter, B., Kröger, S., Schweckendiek, J., et al. (2012). Creativity and the brain: uncovering the neural signature of conceptual expansion. Neuropsychologia, 50(8), 1906–1917.CrossRefPubMedGoogle Scholar
  2. Andrews-Hanna, J. R. (2012). The brain’s default network and its adaptive role in internal mentation. The Neuroscientist, 18(3), 251–270.CrossRefPubMedGoogle Scholar
  3. Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: a psychometric view. Behavioural Brain Research, 214(2), 143–156.CrossRefPubMedGoogle Scholar
  4. Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. D. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science, 273(5283), 1868–1871.CrossRefPubMedGoogle Scholar
  5. Aziz-Zadeh, L., Liew, S.-L., & Dandekar, F. (2012). Exploring the neural correlates of visual creativity. Social Cognitive and Affective Neuroscience, nss021.Google Scholar
  6. Baria, A. T., Baliki, M. N., Parrish, T., & Apkarian, A. V. (2011). Anatomical and functional assemblies of brain BOLD oscillations. The Journal of Neuroscience, 31(21), 7910–7919.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Basadur, M., Graen, G. B., & Green, S. G. (1982). Training in creative problem solving: effects on ideation and problem finding and solving in an industrial research organization. Organizational Behavior and Human Performance, 30(1), 41–70.CrossRefGoogle Scholar
  8. Beaty, R. E., Benedek, M., Wilkins, R. W., Jauk, E., Fink, A., Silvia, P. J., et al. (2014). Creativity and the default network: a functional connectivity analysis of the creative brain at rest. Neuropsychologia, 64, 92–98.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Beaty, R. E., Benedek, M., Kaufman, S. B., & Silvia, P. J. (2015). Default and executive network coupling supports creative idea production. Scientific Reports, 5, 10964.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F., & Neubauer, A. C. (2014a). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage, 88, 125–133.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Benedek, M., Beaty, R., Jauk, E., Koschutnig, K., Fink, A., Silvia, P. J., et al. (2014b). Creating metaphors: the neural basis of figurative language production. NeuroImage, 90, 99–106.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bianciardi, M., Fukunaga, M., van Gelderen, P., Horovitz, S. G., de Zwart, J. A., Shmueli, K., & Duyn, J. H. (2009). Sources of functional magnetic resonance imaging signal fluctuations in the human brain at rest: a 7 T study. Magnetic Resonance Imaging, 27(8), 1019–1029.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Blazhenkova, O., & Kozhevnikov, M. (2010). Visual-object ability: a new dimension of non-verbal intelligence. Cognition, 117(3), 276–301.CrossRefPubMedGoogle Scholar
  14. Boccia, M., Piccardi, L., Palermo, L., Nori, R., & Palmiero, M. (2015). Where do bright ideas occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-specific creativity. Frontiers in Psychology, 6, 1195.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Boly, M., Balteau, E., Schnakers, C., Degueldre, C., Moonen, G., Luxen, A., et al. (2007). Baseline brain activity fluctuations predict somatosensory perception in humans. Proceedings of the National Academy of Sciences, 104(29), 12187–12192.CrossRefGoogle Scholar
  16. Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49–57.CrossRefPubMedGoogle Scholar
  17. Cassotti, M., Agogué, M., Camarda, A., Houdé, O., & Borst, G. (2016). Inhibitory control as a core process of creative problem solving and idea generation from childhood to adulthood. New Directions for Child and Adolescent Development, 2016(151), 61–72.CrossRefPubMedGoogle Scholar
  18. Chen, H., Yang, Q., Liao, W., Gong, Q., & Shen, S. (2009). Evaluation of the effective connectivity of supplementary motor areas during motor imagery using granger causality mapping. NeuroImage, 47(4), 1844–1853.CrossRefPubMedGoogle Scholar
  19. Chen, Q., Yang, W., Li, W., Wei, D., Li, H., Lei, Q., et al. (2014). Association of creative achievement with cognitive flexibility by a combined voxel-based morphometry and resting-state functional connectivity study. NeuroImage, 102, 474–483.CrossRefPubMedGoogle Scholar
  20. Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 1348–1355.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83(1), 238–251.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cousijn, J., Zanolie, K., Munsters, R. J. M., Kleibeuker, S. W., & Crone, E. A. (2014). The relation between resting state connectivity and creativity in adolescents before and after training. PloS One, 9(9), e105780.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Daniels-McGhee, S., & Davis, G. A. (1994). The imagery-creativity connection. The Journal of Creative Behavior, 28(3), 151–176.CrossRefGoogle Scholar
  24. de Souza, L. C., Guimarães, H. C., Teixeira, A. L., Caramelli, P., Levy, R., Dubois, B., & Volle, E. (2014). Frontal lobe neurology and the creative mind. Frontiers in Psychology, 5.Google Scholar
  25. Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review, 11(6), 1011–1026.CrossRefGoogle Scholar
  26. Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822.CrossRefPubMedGoogle Scholar
  27. Drago, V., Foster, P. S., Skidmore, F. M., & Heilman, K. M. (2009). Creativity in Parkinson’s disease as a function of right versus left hemibody onset. Journal of the Neurological Sciences, 276(1), 179–183.CrossRefPubMedGoogle Scholar
  28. Farah, M. J., Hammond, K. M., Levine, D. N., & Calvanio, R. (1988). Visual and spatial mental imagery: dissociable systems of representation. Cognitive Psychology, 20(4), 439–462.CrossRefPubMedGoogle Scholar
  29. Finke, R. A. (1996). Imagery, creativity, and emergent structure. Consciousness and Cognition, 5(3), 381–393.CrossRefPubMedGoogle Scholar
  30. Finke, R. A. (2014). Creative imagery: discoveries and inventions in visualization. Psychology press.Google Scholar
  31. Finke, R. A., & Slayton, K. (1988). Explorations of creative visual synthesis in mental imagery. Memory & Cognition, 16(3), 252–257.CrossRefGoogle Scholar
  32. Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: theory, research, and applications. Cambridge, MA: MIT Press.Google Scholar
  33. Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a synthesis. Human Brain Mapping, 2(1–2), 56–78.CrossRefGoogle Scholar
  34. Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connectivity, 1(1), 13–36.CrossRefPubMedGoogle Scholar
  35. Goel, V., & Vartanian, O. (2005). Dissociating the roles of right ventral lateral and dorsal lateral prefrontal cortex in generation and maintenance of hypotheses in set-shift problems. Cerebral Cortex, 15(8), 1170–1177.CrossRefPubMedGoogle Scholar
  36. Gonen-Yaacovi, G., de Souza, L. C., Levy, R., Urbanski, M., Josse, G., & Volle, E. (2013). Rostral and caudal prefrontal contribution to creativity: a meta-analysis of functional imaging data. Frontiers in Human Neuroscience, 7, 465.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Guilford, J. P., Christensen, P. R., Merrifield, P. R., & Wilson, R. C. (1978). Alternate uses: Manual of instructions and interpretation. Orange, CA: Sheridan Psychological Services.Google Scholar
  38. Hamilton, J. P., Chen, G., Thomason, M. E., Schwartz, M. E., & Gotlib, I. H. (2011). Investigating neural primacy in major depressive disorder: multivariate granger causality analysis of resting-state fMRI time-series data. Molecular Psychiatry, 16(7), 763–772.CrossRefPubMedGoogle Scholar
  39. Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., et al. (2011). Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. NeuroImage, 55(1), 287–295.CrossRefPubMedGoogle Scholar
  40. He, B. J. (2013). Spontaneous and task-evoked brain activity negatively interact. The Journal of Neuroscience, 33(11), 4672–4682.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hou, Y., Wu, X., Hallett, M., Chan, P., & Wu, T. (2014). Frequency-dependent neural activity in Parkinson's disease. Human Brain Mapping, 35(12), 5815–5833.CrossRefPubMedGoogle Scholar
  42. Huang, P., Qiu, L., Shen, L., Zhang, Y., Song, Z., Qi, Z., et al. (2013). Evidence for a left-over-right inhibitory mechanism during figural creative thinking in healthy nonartists. Human Brain Mapping, 34(10), 2724–2732.CrossRefPubMedGoogle Scholar
  43. Jung, R. E., Segall, J. M., Jeremy Bockholt, H., Flores, R. A., Smith, S. M., Chavez, R. S., & Haier, R. J. (2010). Neuroanatomy of creativity. Human Brain Mapping, 31(3), 398–409.PubMedPubMedCentralGoogle Scholar
  44. Kapur, N. (1996). Paradoxical functional facilitation in brain-behaviour research. Brain, 119(5), 1775–1790.CrossRefPubMedGoogle Scholar
  45. Kapur, N., Pascual-Leone, A., Ramachandran, V., Cole, J., Della Sala, S., & Manly, T. (2013). The paradoxical brain. Psychologist, 26(2), 102–105.Google Scholar
  46. Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neuroscience & Biobehavioral Reviews, 31(3), 377–395.CrossRefGoogle Scholar
  47. Kokotovich, V., & Purcell, T. (2000). Mental synthesis and creativity in design: an experimental examination. Design Studies, 21(5), 437–449.CrossRefGoogle Scholar
  48. Kosslyn, S. M. (1980). Image and mind. Cambridge, MA: Harvard University press.Google Scholar
  49. Kozhevnikov, M., Kozhevnikov, M., Yu, C. J., & Blazhenkova, O. (2013). Creativity, visualization abilities, and visual cognitive style. British Journal of Educational Psychology, 83(2), 196–209.CrossRefPubMedGoogle Scholar
  50. Le Boutillier, N. (1999). The role of mental imagery in creativity. Doctoral dissertation, Middlesex University.Google Scholar
  51. LeBoutillier, N., & Marks, D. F. (2003). Mental imagery and creativity: a meta-analytic review study. British Journal of Psychology, 94(1), 29–44.CrossRefPubMedGoogle Scholar
  52. Leonardi, N., & Van De Ville, D. (2013). Identifying network correlates of brain states using tensor decompositions of whole-brain dynamic functional connectivity. Paper presented at the Pattern Recognition in Neuroimaging (PRNI), 2013 International Workshop on.Google Scholar
  53. Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences, 106(41), 17558–17563.CrossRefGoogle Scholar
  54. Liao, W., Ding, J., Marinazzo, D., Xu, Q., Wang, Z., Yuan, C., et al. (2011). Small-world directed networks in the human brain: multivariate granger causality analysis of resting-state fMRI. NeuroImage, 54(4), 2683–2694.CrossRefPubMedGoogle Scholar
  55. Liu, X., Zhu, X.-H., & Chen, W. (2011). Baseline BOLD correlation predicts individuals’ stimulus-evoked BOLD responses. NeuroImage, 54(3), 2278–2286.CrossRefPubMedGoogle Scholar
  56. Lotze, M., Erhard, K., Neumann, N., Eickhoff, S. B., & Langner, R. (2014). Neural correlates of verbal creativity: differences in resting-state functional connectivity associated with expertise in creative writing. Frontiers in Human Neuroscience, 8, 516.Google Scholar
  57. Luo, J., Li, W., Qiu, J., Wei, D., Liu, Y., & Zhang, Q. (2013). Neural basis of scientific innovation induced by heuristic prototype. PloS One, 8(1), e49231.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Lustenberger, C., Boyle, M. R., Foulser, A. A., Mellin, J. M., & Fröhlich, F. (2015). Functional role of frontal alpha oscillations in creativity. Cortex, 67, 74–82.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mayseless, N., & Shamay-Tsoory, S. G. (2015). Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience, 291, 167–176.CrossRefPubMedGoogle Scholar
  60. Mayseless, N., Aharon-Peretz, J., & Shamay-Tsoory, S. (2014). Unleashing creativity: the role of left temporoparietal regions in evaluating and inhibiting the generation of creative ideas. Neuropsychologia, 64, 157–168.CrossRefPubMedGoogle Scholar
  61. Mennes, M., Zuo, X.-N., Kelly, C., Di Martino, A., Zang, Y.-F., Biswal, B., et al. (2011). Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics. NeuroImage, 54(4), 2950–2959.CrossRefPubMedGoogle Scholar
  62. Mihov, K. M., Denzler, M., & Förster, J. (2010). Hemispheric specialization and creative thinking: a meta-analytic review of lateralization of creativity. Brain and Cognition, 72(3), 442–448.CrossRefPubMedGoogle Scholar
  63. Milivojevic, B., Hamm, J. P., & Corballis, M. C. (2009). Functional neuroanatomy of mental rotation. Journal of Cognitive Neuroscience, 21(5), 945–959.CrossRefPubMedGoogle Scholar
  64. Miller, B. L., & Hou, C. E. (2004). Portraits of artists: emergence of visual creativity in dementia. Archives of Neurology, 61(6), 842–844.CrossRefPubMedGoogle Scholar
  65. Ng, V. W. K., Bullmore, E. T., De Zubicaray, G. I., Cooper, A., Suckling, J., & Williams, S. C. R. (2001). Identifying rate-limiting nodes in large-scale cortical networks for visuospatial processing: an illustration using fMRI. Journal of Cognitive Neuroscience, 13(4), 537–545.CrossRefPubMedGoogle Scholar
  66. Nitsche, M. A., & Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology, 57(10), 1899–1901.CrossRefPubMedGoogle Scholar
  67. Nitsche, M. A., Nitsche, M. S., Klein, C. C., Tergau, F., Rothwell, J. C., & Paulus, W. (2003). Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clinical Neurophysiology, 114(4), 600–604.CrossRefPubMedGoogle Scholar
  68. Northoff, G., Qin, P., & Nakao, T. (2010). Rest-stimulus interaction in the brain: a review. Trends in Neurosciences, 33(6), 277–284.CrossRefPubMedGoogle Scholar
  69. Nyquist, H. (1928). Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers, 47(2), 617–644.Google Scholar
  70. Palmiero, M., Nori, R., Aloisi, V., Ferrara, M., & Piccardi, L. (2015). Domain-specificity of creativity: a study on the relationship between visual creativity and visual mental imagery. Frontiers in Psychology, 6, 1870–1870.Google Scholar
  71. Palmiero, M., Nori, R., & Piccardi, L. (2016). Visualizer cognitive style enhances visual creativity. Neuroscience Letters,  615, 98–101.Google Scholar
  72. Pan, X., & Yu, H. (2016). Different effects of cognitive shifting and intelligence on creativity. The Journal of Creative Behavior. doi: 10.1002/jocb.144
  73. Park, H.-D., Correia, S., Ducorps, A., & Tallon-Baudry, C. (2014). Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nature Neuroscience, 17(4), 612–618.CrossRefPubMedGoogle Scholar
  74. Park, H. R., Kirk, I. J., & Waldie, K. E. (2015). Neural correlates of creative thinking and schizotypy. Neuropsychologia, 73, 94–107.CrossRefPubMedGoogle Scholar
  75. Pyka, M., Beckmann, C. F., Schöning, S., Hauke, S., Heider, D., Kugel, H., et al. (2009). Impact of working memory load on FMRI resting state pattern in subsequent resting phases. PloS One, 4(9), e7198.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37(4), 1083–1090.CrossRefPubMedGoogle Scholar
  77. Reedijk, S. A., Bolders, A., & Hommel, B. (2013). The impact of binaural beats on creativity. Frontiers in Human Neuroscience, 7(786.10), 3389.Google Scholar
  78. Sadaghiani, S., & Kleinschmidt, A. (2013). Functional interactions between intrinsic brain activity and behavior. NeuroImage, 80, 379–386.CrossRefPubMedGoogle Scholar
  79. Saggar, M., Quintin, E.-M., Kienitz, E., Bott, N. T., Sun, Z., Hong, W.-C.,. .. Royalty, A. (2015). Pictionary-based fMRI paradigm to study the neural correlates of spontaneous improvisation and figural creativity. Scientific Reports, 5.Google Scholar
  80. Saggar, M., Quintin, E.-M., Bott, N. T., Kienitz, E., Chien, Y.-h., Hong, D. W.,. .. Reiss, A. L. (2016). Changes in brain activation associated with spontaneous improvization and figural creativity after design-thinking-based training: a longitudinal fMRI study. Cerebral Cortex, bhw171.Google Scholar
  81. Schacter, D. L., Addis, D. R., Hassabis, D., Martin, V. C., Spreng, R. N., & Szpunar, K. K. (2012). The future of memory: remembering, imagining, and the brain. Neuron, 76(4), 677–694.CrossRefPubMedGoogle Scholar
  82. Seth, A. K., Barrett, A. B., & Barnett, L. (2015). Granger causality analysis in neuroscience and neuroimaging. The Journal of Neuroscience, 35(8), 3293–3297.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Shah, C., Erhard, K., Ortheil, H. J., Kaza, E., Kessler, C., & Lotze, M. (2013). Neural correlates of creative writing: an fMRI study. Human Brain Mapping, 34(5), 1088–1101.CrossRefPubMedGoogle Scholar
  84. Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D., & Mayseless, N. (2011). The origins of originality: the neural bases of creative thinking and originality. Neuropsychologia, 49(2), 178–185.CrossRefPubMedGoogle Scholar
  85. Song, X.-W., Dong, Z.-Y., Long, X.-Y., Li, S.-F., Zuo, X.-N., Zhu, C.-Z., et al. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS One, 6(9), e25031.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Sowden, P. T., Pringle, A., & Gabora, L. (2015). The shifting sands of creative thinking: connections to dual-process theory. Thinking & Reasoning, 21(1), 40–60.CrossRefGoogle Scholar
  87. Sun, J., Chen, Q., Zhang, Q., Li, Y., Li, H., Wei, D.,. .. Qiu, J. (2016). Training your brain to be more creative: brain functional and structural changes induced by divergent thinking training. Human Brain Mapping, 37(10), 3375–3387.Google Scholar
  88. Swick, D., Ashley, V., & Turken, U. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience, 9(1), 1.CrossRefGoogle Scholar
  89. Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 2921–2929.CrossRefPubMedGoogle Scholar
  90. Takeuchi, H., Taki, Y., Sekiguchi, A., Nouchi, R., Kotozaki, Y., Nakagawa, S., et al. (2013). Association of hair iron levels with creativity and psychological variables related to creativity. Frontiers in Human Neuroscience, 7(875), 10.3389.Google Scholar
  91. Tavor, I., Jones, O. P., Mars, R. B., Smith, S. M., Behrens, T. E., & Jbabdi, S. (2016). Task-free MRI predicts individual differences in brain activity during task performance. Science, 352(6282), 216–220.CrossRefPubMedGoogle Scholar
  92. Tung, K.-C., Uh, J., Mao, D., Xu, F., Xiao, G., & Lu, H. (2013). Alterations in resting functional connectivity due to recent motor task. NeuroImage, 78, 316–324.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Verstijnen, I. M., van Leeuwen, C., Goldschmidt, G., Hamel, R., & Hennessey, J. (1998). Creative discovery in imagery and perception: combining is relatively easy, restructuring takes a sketch. Acta Psychologica, 99(2), 177–200.CrossRefPubMedGoogle Scholar
  94. Wang, J., Lu, M., Fan, Y., Wen, X., Zhang, R., Wang, B., et al. (2015). Exploring brain functional plasticity in world class gymnasts: a network analysis. Brain Structure and Function, 1–17.Google Scholar
  95. Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., & Qiu, J. (2014). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51, 92–102.CrossRefPubMedGoogle Scholar
  96. Yan, C., Liu, D., He, Y., Zou, Q., Zhu, C., Zuo, X., et al. (2009). Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PloS One, 4(5), e5743.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yang, H., Long, X.-Y., Yang, Y., Yan, H., Zhu, C.-Z., Zhou, X.-P., et al. (2007). Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. NeuroImage, 36(1), 144–152.CrossRefPubMedGoogle Scholar
  98. Yuan, B.-K., Wang, J., Zang, Y.-F., & Liu, D.-Q. (2014). Amplitude differences in high-frequency fMRI signals between eyes open and eyes closed resting states. Frontiers in Human Neuroscience, 8(503), 10.3389.Google Scholar
  99. Yu-Feng, Z., Yong, H., Chao-Zhe, Z., Qing-Jiu, C., Man-Qiu, S., Meng, L., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development, 29(2), 83–91.CrossRefGoogle Scholar
  100. Zaidel, D. W. (2014). Creativity, brain, and art: biological and neurological considerations. Frontiers in Human Neuroscience, 8, 389.Google Scholar
  101. Zang, Z.-X., Yan, C.-G., Dong, Z.-Y., Huang, J., & Zang, Y.-F. (2012). Granger causality analysis implementation on MATLAB: a graphic user interface toolkit for fMRI data processing. Journal of Neuroscience Methods, 203(2), 418–426.CrossRefPubMedGoogle Scholar
  102. Zhao, Q., Zhou, Z., Xu, H., Fan, W., & Han, L. (2014). Neural pathway in the right hemisphere underlies verbal insight problem solving. Neuroscience, 256, 334–341.CrossRefPubMedGoogle Scholar
  103. Zheng, X., Alsop, D. C., & Schlaug, G. (2011). Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. NeuroImage, 58(1), 26–33.CrossRefPubMedPubMedCentralGoogle Scholar
  104. Zuo, X.-N., Di Martino, A., Kelly, C., Shehzad, Z. E., Gee, D. G., Klein, D. F., et al. (2010). The oscillating brain: complex and reliable. NeuroImage, 49(2), 1432–1445.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yuxuan Cai
    • 1
  • Delong Zhang
    • 1
  • Bishan Liang
    • 2
  • Zengjian Wang
    • 1
  • Junchao Li
    • 1
  • Zhenni Gao
    • 1
  • Mengxia Gao
    • 1
  • Song Chang
    • 1
  • Bingqing Jiao
    • 1
  • Ruiwang Huang
    • 1
  • Ming Liu
    • 1
  1. 1.Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of PsychologySouth China Normal UniversityGuangzhouChina
  2. 2.College of EducationGuangdong Polytechnic Normal UniversityGuangdong ShengChina

Personalised recommendations