Brain Imaging and Behavior

, Volume 12, Issue 1, pp 238–246 | Cite as

Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise centrality mapping

  • Sebastian Markett
  • Martin Reuter
  • Behrend Heeren
  • Bernd Lachmann
  • Bernd Weber
  • Christian Montag
Original Research


The functional connectome represents a comprehensive network map of functional connectivity throughout the human brain. To date, the relationship between the organization of functional connectivity and cognitive performance measures is still poorly understood. In the present study we use resting-state functional magnetic resonance imaging (fMRI) data to explore the link between the functional connectome and working memory capacity in an individual differences design. Working memory capacity, which refers to the maximum amount of context information that an individual can retain in the absence of external stimulation, was assessed outside the MRI scanner and estimated based on behavioral data from a change detection task. Resting-state time series were analyzed by means of voxelwise degree and eigenvector centrality mapping, which are data-driven network analytic approaches for the characterization of functional connectivity. We found working memory capacity to be inversely correlated with both centrality in the right intraparietal sulcus. Exploratory analyses revealed that this relationship was putatively driven by an increase in negative connectivity strength of the structure. This resting-state connectivity finding fits previous task based activation studies that have shown that this area responds to manipulations of working memory load.


Working memory Resting-state fMRI Connectome Intraparietal sulcus Working memory capacity, cognitive ability 


Compliance with ethical standards


This work was supported by two grants from the German Research Foundation (DFG) awarded to Christian Montag (MO-2363/2–1 and MO-2363/3–1).

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106(1), 20–29.CrossRefPubMedGoogle Scholar
  2. Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119–126.CrossRefPubMedGoogle Scholar
  3. Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.Google Scholar
  4. Baddeley, A. D., & Hitch, G. (1974). Working memory. The psychology of learning and motivation, 8, 47–89.CrossRefGoogle Scholar
  5. Bassett, D. S., & Bullmore, E. T. (2009). Human brain networks in health and disease. Current Opinion in Neurology, 22(4), 340–347.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 1001–1013. doi: 10.1098/rstb.2005.1634.CrossRefGoogle Scholar
  7. Bey, K., Montag, C., Reuter, M., Weber, B., & Markett, S. (2015). Susceptibility to everyday cognitive failure is reflected in functional network interactions in the resting brain. NeuroImage. doi: 10.1016/j.neuroimage.2015.07.041.PubMedGoogle Scholar
  8. Braun, U., Plichta, M. M., Esslinger, C., Sauer, C., Haddad, L., Grimm, O., & Meyer-Lindenberg, A. (2012). Test–retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. NeuroImage, 59(2), 1404–1412.CrossRefPubMedGoogle Scholar
  9. Bray, S., Almas, R., Arnold, A. E. G. F., Iaria, G., & MacQueen, G. (2015). Intraparietal sulcus activity and functional connectivity supporting spatial working memory manipulation. Cerebral Cortex, 25(5), 1252–1264.CrossRefPubMedGoogle Scholar
  10. Cao, H., Plichta, M. M., Schäfer, A., Haddad, L., Grimm, O., Schneider, M., et al. (2014). Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state. NeuroImage, 84, 888–900.CrossRefPubMedGoogle Scholar
  11. Carp, J. (2013). Optimizing the order of operations for movement scrubbing: comment on power et al. NeuroImage, 76, 436–438.CrossRefPubMedGoogle Scholar
  12. Cohen, J. R., Gallen, C. L., Jacobs, E. G., Lee, T. G., & D’Esposito, M. (2014). Quantifying the reconfiguration of intrinsic networks during working memory. PloS One, 9(9), e106636.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cohen, J. R., D’Esposito, M. (2016). The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition. Journal of Neuroscience, 36(48), 12083–12094.Google Scholar
  14. Colom, R., Karama, S., Jung, R. E., & Haier, R. J. (2010). Human intelligence and brain networks. Dialogues in Clinical Neuroscience, 12(4), 489–501.PubMedPubMedCentralGoogle Scholar
  15. Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Sciences, 7(12), 547–552.CrossRefPubMedGoogle Scholar
  16. Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  17. Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114 discussion 114–85.CrossRefPubMedGoogle Scholar
  18. Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415–423. doi: 10.1016/S1364-6613(03)00197-9.CrossRefPubMedGoogle Scholar
  19. D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66, 115–142.CrossRefPubMedGoogle Scholar
  20. D’Esposito, M., Postle, B. R., & Rypma, B. (2000). Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Experimental Brain Research, 133(1), 3–11.CrossRefPubMedGoogle Scholar
  21. De Vico Fallani, F., Richiardi, J., Chavez, M., & Achard, S. (2014). Graph analysis of functional brain networks: practical issues in translational neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1653). doi: 10.1098/rstb.2013.0521.
  22. Ekman, M., Fiebach, C. J., Melzer, C., Tittgemeyer, M., & Derrfuss, J. (2016). Different roles of direct and indirect frontoparietal pathways for individual working memory capacity. Journal of Neuroscience, 36(10), 2894–2903.CrossRefPubMedGoogle Scholar
  23. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270–3283.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Geib, B. R., Stanley, M. L., Wing, E. A., Laurienti, P. J., & Cabeza, R. (2015). Hippocampal Contributions to the Large-Scale Episodic Memory Network Predict Vivid Visual Memories. Cerebral Cortex, 2015:1–14.Google Scholar
  26. Goldman-Rakic, P. S. (1995). Cellular basis of working memory. Neuron, 14(3), 477–485.CrossRefPubMedGoogle Scholar
  27. Gottfredson, L. S., & Deary, I. J. (2004). Intelligence predicts health and longevity, but why? Current Directions in Psychological Science, 13(1), 1–4.CrossRefGoogle Scholar
  28. Jung, R. E., & Haier, R. J. (2007). The Parieto-frontal integration theory (P-FIT) of intelligence: converging neuroimaging evidence. Behavioral and Brain Sciences, 30(02), 135–154.CrossRefPubMedGoogle Scholar
  29. Kalcher, K., Boubela, R. N., Huf, W., Bartova, L., Kronnerwetter, C., Derntl, B., et al. (2014). The spectral diversity of resting-state fluctuations in the human brain. PloS One, 9(4), e93375.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Keilholz, S. D., Magnuson, M., & Thompson, G. (2010). Evaluation of data-driven network analysis approaches for functional connectivity MRI. Brain Structure and Function, 215(2), 129–140.CrossRefPubMedGoogle Scholar
  31. Kelly, A. M. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39(1), 527–537. doi: 10.1016/j.neuroimage.2007.08.008.CrossRefPubMedGoogle Scholar
  32. Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity?! Intelligence, 14(4), 389–433.CrossRefGoogle Scholar
  33. Lee, T. G., & D’Esposito, M. (2012). The dynamic nature of top-down signals originating from prefrontal cortex: a combined fMRI-TMS study. Journal of Neuroscience, 32(44), 15458–15466. doi: 10.1523/JNEUROSCI.0627-12.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: a meta-analysis. Journal of Abnormal Psychology, 114(4), 599–611.CrossRefPubMedGoogle Scholar
  35. Lohmann, G., Margulies, D. S., Horstmann, A., Pleger, B., Lepsien, J., Goldhahn, D., et al. (2010). Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PloS One, 5(4), e10232.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lorenc, E. S., Lee, T. G., Chen, A. J.-W., & D’Esposito, M. (2015). The effect of disruption of prefrontal cortical function with Transcranial magnetic stimulation on visual working memory. Frontiers in Systems Neuroscience, 169. doi: 10.3389/fnsys.2015.00169.
  37. Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281.CrossRefPubMedGoogle Scholar
  38. Markett, S. A., Montag, C., & Reuter, M. (2010). The association between dopamine DRD2 polymorphisms and working memory capacity is modulated by a functional polymorphism on the nicotinic receptor gene CHRNA4. Journal of Cognitive Neuroscience, 22(9), 1944–1954.CrossRefPubMedGoogle Scholar
  39. Markett, S., Weber, B., Voigt, G., Montag, C., Felten, A., Elger, C., & Reuter, M. (2013). Intrinsic connectivity networks and personality: the temperament dimension harm avoidance moderates functional connectivity in the resting brain. Neuroscience, 240(C), 98–105.CrossRefPubMedGoogle Scholar
  40. Markett, S., Montag, C., Heeren, B., Saryiska, R., Lachmann, B., Weber, B., & Reuter, M. (2015). Voxelwise eigenvector centrality mapping of the human functional connectome reveals an influence of the catechol-O-methyltransferase val158met polymorphism on the default mode and somatomotor network. Brain Structure and Function. doi: 10.1007/s00429-015-1069-9.PubMedGoogle Scholar
  41. McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nature Neuroscience, 11(1), 103–107.CrossRefPubMedGoogle Scholar
  42. Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neurosciences, 6, 414–417.CrossRefGoogle Scholar
  43. Nee, D. E., & Brown, J. W. (2013). Dissociable frontal-striatal and frontal-parietal networks involved in updating hierarchical contexts in working memory. Cerebral Cortex, 23(9), 2146–2158.CrossRefPubMedGoogle Scholar
  44. Niazy, R. K., Xie, J., Miller, K., Beckmann, C. F., & Smith, S. M. (2011). Chapter 17- spectral characteristics of resting state networks. In Y. D. V. D. W. Eus J.W. Van Someren Pieter R. Roelfsema, Huibert D. Mansvelder and Fernando H. Lopes Da Silva (Ed.), Progress in brain research (193, 259–276). Elsevier.Google Scholar
  45. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.CrossRefPubMedGoogle Scholar
  46. Palva, J. M., Monto, S., Kulashekhar, S., & Palva, S. (2010). Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proceedings of the National Academy of Sciences, 107(16), 7580–7585.CrossRefGoogle Scholar
  47. Pashler, H. (1988). Familiarity and visual change detection. Perception & Psychophysics, 44(4), 369–378.Google Scholar
  48. Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research, 133(1), 44–54.CrossRefPubMedGoogle Scholar
  49. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.CrossRefPubMedGoogle Scholar
  50. Repovš, G., & Barch, D. M. (2012). Working memory related brain network connectivity in individuals with schizophrenia and their siblings. Frontiers in Human Neuroscience, 6(137). doi: 10.3389/fnhum.2012.00137.
  51. Riggall, A. C., & Postle, B. R. (2012). The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. The Journal of Neuroscience, 32(38), 12990–12998.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Riley, M. R., & Constantinidis, C. (2016). Role of prefrontal persistent activity in working memory. Frontiers in Systems Neuroscience, 181. doi: 10.3389/fnsys.2015.00181.
  53. Scolari, M., Seidl-Rathkopf, K. N., & Kastner, S. (2015). Functions of the human frontoparietal attention network: evidence from neuroimaging. Current Opinion in Behavioral Sciences, 1, 32–39. doi: 10.1016/j.cobeha.2014.08.003.CrossRefPubMedGoogle Scholar
  54. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Shehzad, Z., Kelly, A. M. C., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q., et al. (2009). The resting brain: unconstrained yet reliable. Cerebral Cortex, 19(10), 2209–2229.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Smith, S. (2015). Linking cognition to brain connectivity. Nature Neuroscience, 19(1), 7–9. doi: 10.1038/nn.4206.CrossRefGoogle Scholar
  57. Smith, E. E., & Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283(5408), 1657–1661.CrossRefPubMedGoogle Scholar
  58. Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller, K. L., et al. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17(12), 666–682.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E. J., & Glasser, M. F. (2015). A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience, 18 (11), 1565–1567.Google Scholar
  60. Sreenivasan, K. K., Curtis, C. E., & D’Esposito, M. (2014). Revisiting the role of persistent neural activity during working memory. Trends in Cognitive Sciences, 18(2), 82–89. doi: 10.1016/j.tics.2013.12.001.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428(6984), 751–754.CrossRefPubMedGoogle Scholar
  62. Todd, J. J., & Marois, R. (2005). Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cognitive, Affective, & Behavioral Neuroscience, 5(2), 144–155.CrossRefGoogle Scholar
  63. Vaidya, C. J., & Gordon, E. M. (2013). Phenotypic variability in resting-state functional connectivity: current status. Brain Connectivity, 3(2), 99–120.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Van Albada, S. J., & Robinson, P. A. (2007). Transformation of arbitrary distributions to the normal distribution with application to EEG test–retest reliability. Journal of Neuroscience Methods. doi: 10.1016/j.jneumeth.2006.11.004.PubMedGoogle Scholar
  65. van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534.CrossRefPubMedGoogle Scholar
  66. Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J., Yacoub, E., Uğurbil, K., & Consortium, for the W.-M. H. (2013). The WU-Minn human connectome project: an overview. NeuroImage, 80(C), 62–79. doi: 10.1016/j.neuroimage.2013.05.041.
  67. Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748–751.CrossRefPubMedGoogle Scholar
  68. Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438(7067), 500–503.CrossRefPubMedGoogle Scholar
  69. Weber, E. M. G., Peters, B., Hahn, T., Bledowski, C., & Fiebach, C. J. (2016). Superior intraparietal sulcus controls the variability of visual working memory precision. Journal of Neuroscience, 36(20), 5623–5635.CrossRefGoogle Scholar
  70. Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971–978. doi: 10.1038/nn1727.CrossRefPubMedGoogle Scholar
  71. Wink, A. M., de Munck, J. C., van der Werf, Y. D., van den Heuvel, O. A., & Barkhof, F. (2012). Fast eigenvector centrality mapping of voxel-wise connectivity in functional magnetic resonance imaging: implementation, validation, and interpretation. Brain Connectivity, 2(5), 265–274.CrossRefPubMedGoogle Scholar
  72. Yan, C. G., & Zang, Y. F. (2010). DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in System Neuroscience. doi: 10.3389/fnsys.2010.00013.Google Scholar
  73. Yu, Q., Wu, L., Bridwell, D. A., Erhardt, E. B., Du, Y., He, H., et al. (2016). Building an EEG-fMRI multi-modal brain graph: a concurrent EEG-fMRI study. Frontiers in Human Neuroscience, 10. doi: 10.3389/fnhum.2016.00476.

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Sebastian Markett
    • 1
    • 2
  • Martin Reuter
    • 1
    • 2
  • Behrend Heeren
    • 3
  • Bernd Lachmann
    • 4
  • Bernd Weber
    • 2
    • 4
    • 5
  • Christian Montag
    • 6
    • 7
  1. 1.Department of PsychologyUniversity of BonnBonnGermany
  2. 2.Center for Economics and NeuroscienceUniversity of BonnBonnGermany
  3. 3.Institute for Numerical SimulationUniversity of BonnBonnGermany
  4. 4.Department of EpileptologyUniversity of BonnBonnGermany
  5. 5.Department of NeuroCognition, Life & Brain CenterUniversity of BonnBonnGermany
  6. 6.Institute of Psychology and EducationUlm UniversityUlmGermany
  7. 7.Key Laboratory for NeuroInformationUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations