Brain Imaging and Behavior

, Volume 12, Issue 1, pp 229–237 | Cite as

Impaired white matter connectivity between regions containing mirror neurons, and relationship to negative symptoms and social cognition, in patients with first-episode schizophrenia

  • Yukiko Saito
  • Marek Kubicki
  • Inga Koerte
  • Tatsui Otsuka
  • Yogesh Rathi
  • Ofer Pasternak
  • Sylvain Bouix
  • Ryan Eckbo
  • Zora Kikinis
  • Christian Clemm von Hohenberg
  • Tomohide Roppongi
  • Elisabetta Del Re
  • Takeshi Asami
  • Sang-Hyuk Lee
  • Sarina Karmacharya
  • Raquelle I. Mesholam-Gately
  • Larry J. Seidman
  • James Levitt
  • Robert W. McCarley
  • Martha E. Shenton
  • Margaret A. Niznikiewicz
Original Research
  • 376 Downloads

Abstract

In schizophrenia, abnormalities in structural connectivity between brain regions known to contain mirror neurons and their relationship to negative symptoms related to a domain of social cognition are not well understood. Diffusion tensor imaging (DTI) scans were acquired in 16 patients with first episode schizophrenia and 16 matched healthy controls. FA and Trace of the tracts interconnecting regions known to be rich in mirror neurons, i.e., anterior cingulate cortex (ACC), inferior parietal lobe (IPL) and premotor cortex (PMC) were evaluated. A significant group effect for Trace was observed in IPL-PMC white matter fiber tract (F (1, 28) = 7.13, p = .012), as well as in the PMC-ACC white matter fiber tract (F (1, 28) = 4.64, p = .040). There were no group differences in FA. In addition, patients with schizophrenia showed a significant positive correlation between the Trace of the left IPL-PMC white matter fiber tract, and the Ability to Feel Intimacy and Closeness score (rho = .57, p = 0.034), and a negative correlation between the Trace of the left PMC-ACC and the Relationships with Friends and Peers score (rho = remove -.54, p = 0.049). We have demonstrated disrupted white mater microstructure within the white matter tracts subserving brain regions containing mirror neurons. We further showed that such structural disruptions might impact negative symptoms and, more specifically, contribute to the inability to feel intimacy (a measure conceptually related to theory of mind) in first episode schizophrenia. Further studies are needed to understand the potential of our results for diagnosis, prognosis and therapeutic interventions.

Keywords

Mirror neuron First-episode schizophrenia White matter connectivity Diffusion tensor imaging 

Notes

Acknowledgements

This work was supported in part by a Department of Veteran Affairs Merit Award (MES), and in part by NIH grants including 1P50MH080272 CIDAR (RWM, MES), P41 RR13218 (MES), R01 MH 50740 (MES), NA-MIC (NIH) grant U54 GM072977 (MK), 1R01 AG04252 (MK and OP), R01 MH102377 (MK, MES and OP). R01 MH074794 (OP), 2P41 EB015902-16 (OP, MES), the Commonwealth Research Center (SCDMH82101008006; LJS), NARSAD (ZK and OP), Else Kröner-Fresenius Stiftung, Germany (IK), NIMH R21MH094509 (MAN).

Compliance with ethical standards

Conflict of interest

The Authors Yukiko Saito, Marek Kubicki, Inga Koerte, Tatsui Otsuka, Yogesh Rathi, Ofer Pasternak, Sylvain Bouix, Ryan Eckbo, Zora Kikinis, Christian Clemm von Hohenberg, Tomohide Roppongi, Elisabetta Del Re, Takeshi Asami, Sang-Hyuk Lee, Raquelle I. Mesholam-Gately, Larry J. Seidman, James Levitt, Robert W. McCarley, Martha E. Shenton, and Margaret A. Niznikiewicz have declared that there are no conflicts of interest in relation to the subject of this study.

Human and animal rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Adolphs, R. (2010). Conceptual challenges and directions for social neuroscience. Neuron, 65(6), 752–767. doi: 10.1016/j.neuron.2010.03.006.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54(3), 2033–2044. doi: 10.1016/j.neuroimage.2010.09.025.CrossRefPubMedGoogle Scholar
  3. Aziz-Zadeh, L., Iacoboni, M., Zaidel, E., Wilson, S., & Mazziotta, J. (2004). Left hemisphere motor facilitation in response to manual action sounds. [Comparative study research support, Non-U.S. Gov't research support, U.S. Gov't, P.H.S.]. The European Journal of Neuroscience, 19(9), 2609–2612. doi: 10.1111/j.0953-816X.2004.03348.x.CrossRefPubMedGoogle Scholar
  4. Basser, P. J. (1995). Inferring microstructural features and the physiological state of tissues from diffusion-weighted images [review]. NMR in Biomedicine, 8(7–8), 333–344.CrossRefPubMedGoogle Scholar
  5. Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of magnetic resonance Series B, 111(3), 209–219.CrossRefPubMedGoogle Scholar
  6. Basser, P. J., & Pierpaoli, C. (1998). A simplified method to measure the diffusion tensor from seven MR images. Magnetic resonance in medicine : Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 39(6), 928–934.CrossRefGoogle Scholar
  7. Bonini, L. (2016). The extended mirror neuron network: Anatomy, Origin, and Functions. Neuroscientist, doi: 10.1177/1073858415626400.
  8. Burns, J. (2006). The social brain hypothesis of schizophrenia. World Psychiatry, 5(2), 77–81.PubMedPubMedCentralGoogle Scholar
  9. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. [Research support, N.I.H., extramural research support, sNon-U.S. Gov't]. NeuroImage, 31(3), 968–980. doi: 10.1016/j.neuroimage.2006.01.021.CrossRefPubMedGoogle Scholar
  10. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91(1), 176–180.CrossRefPubMedGoogle Scholar
  11. Ferrari, P. F. (2014). The neuroscience of social relations. A comparative-based approach to empathy and to the capacity of evaluating others' action value. Behaviour, 151(2–3), 297–313. doi: 10.1163/1568539X-00003152.CrossRefPubMedPubMedCentralGoogle Scholar
  12. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002). Structured clinical interview for DSM-IV-TR Axis I disorders, research version, patient edition. (SCID-I/P). In Biometrics Research. New York: State Psychiatric Institute.Google Scholar
  13. Flynn, S. W., Lang, D. J., Mackay, A. L., Goghari, V., Vavasour, I. M., Whittall, K. P., et al. (2003). Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Molecular Psychiatry, 8(9), 811–820. doi: 10.1038/sj.mp.4001337.CrossRefPubMedGoogle Scholar
  14. Friston, K. J., & Frith, C. D. (1995). Schizophrenia: a disconnection syndrome? Clinical Neuroscience, 3(2), 89–97.PubMedGoogle Scholar
  15. Good, C. D., Johnsrude, I., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage, 14(3), 685–700. doi: 10.1006/nimg.2001.0857.CrossRefPubMedGoogle Scholar
  16. Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., et al. (1999). Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. The Journal of Neuroscience, 19(10), 4065–4072.PubMedGoogle Scholar
  17. Hakak, Y., Walker, J. R., Li, C., Wong, W. H., Davis, K. L., Buxbaum, J. D., et al. (2001). Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4746–4751. doi: 10.1073/pnas.081071198.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Herting, M. M., Maxwell, E. C., Irvine, C., & Nagel, B. J. (2012). The impact of sex, puberty, and hormones on white matter microstructure in adolescents. Cerebral Cortex, 22(9), 1979–1992. doi: 10.1093/cercor/bhr246.CrossRefPubMedGoogle Scholar
  19. Horan, W. P., Green, M. F., DeGroot, M., Fiske, A., Hellemann, G., Kee, K., et al. (2012). Social cognition in schizophrenia, part 2: 12-month stability and prediction of functional outcome in first-episode patients, [research support, N.I.H., extramural]. Schizophrenia Bulletin, 38(4), 865–872. doi: 10.1093/schbul/sbr001.CrossRefPubMedGoogle Scholar
  20. Horan, W. P., Pineda, J. A., Wynn, J. K., Iacoboni, M., & Green, M. F. (2014). Some markers of mirroring appear intact in schizophrenia: evidence from mu suppression. Cognitive, Affective, & Behavioral Neuroscience, 14(3), 1049–1060. doi: 10.3758/s13415-013-0245-8.CrossRefGoogle Scholar
  21. Jones, D. K., Knosche, T. R., & Turner, R. (2013). White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. NeuroImage, 73, 239–254. doi: 10.1016/j.neuroimage.2012.06.081.CrossRefPubMedGoogle Scholar
  22. Kalkstein, S., Hurford, I., & Gur, R. C. (2010). Neurocognition in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 373–390.CrossRefPubMedGoogle Scholar
  23. Kubicki, M., McCarley, R., Westin, C. F., Park, H. J., Maier, S., Kikinis, R., et al. (2007). A review of diffusion tensor imaging studies in schizophrenia, [Research support, N.I.H., extramural research support, Non-U.S. Gov't research support, U.S. Gov't, Non-P.H.S. Review]. Journal of Psychiatric Research, 41(1–2), 15–30. doi: 10.1016/j.jpsychires.2005.05.005.CrossRefPubMedGoogle Scholar
  24. Lebel, C., Walker, L., Leemans, A., Phillips, L., & Beaulieu, C. (2008). Microstructural maturation of the human brain from childhood to adulthood. NeuroImage, 40(3), 1044–1055. doi: 10.1016/j.neuroimage.2007.12.053.CrossRefPubMedGoogle Scholar
  25. Lee, S. H., Kubicki, M., Asami, T., Seidman, L. J., Goldstein, J. M., Mesholam-Gately, R. I., et al. (2013). Extensive white matter abnormalities in patients with first-episode schizophrenia: a diffusion tensor Iimaging (DTI) study, [Research support, N.I.H., extramural research support, Non-U.S. Gov't research support, U.S. Gov't, Non-P.H.S.]. Schizophrenia Research, 143(2–3), 231–238. doi: 10.1016/j.schres.2012.11.029.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lehman, A. F., & Steinwachs, D. M. (1998). Translating research into practice: the schizophrenia patient outcomes research team (PORT) treatment recommendations. Schizophrenia Bulletin, 24(1), 1–10.CrossRefPubMedGoogle Scholar
  27. Malcolm, J. G., Shenton, M. E., & Rathi, Y. (2009). Neural tractography using an unscented Kalman filter. Information processing in medical imaging: proceedings of the ... conference, 21, 126–138.Google Scholar
  28. Malcolm, J. G., Michailovich, O., Bouix, S., Westin, C. F., Shenton, M. E., & Rathi, Y. (2010). A filtered approach to neural tractography using the Watson directional function, [Research support, N.I.H., extramural research support, Non-U.S. Gov't research support, U.S. Gov't, Non-P.H.S.]. Medical Image Analysis, 14(1), 58–69. doi: 10.1016/j.media.2009.10.003.CrossRefPubMedGoogle Scholar
  29. McDonald, S., English, T., Randall, R., Longman, T., Togher, L., & Tate, R. L. (2013). Assessing social cognition and pragmatic language in adolescents with traumatic brain injuries. Journal of the International Neuropsychological Society, 19(5), 528–538. doi: 10.1017/S1355617713000039.CrossRefPubMedGoogle Scholar
  30. Mehta, U. M., Thirthalli, J., Aneelraj, D., Jadhav, P., Gangadhar, B. N., & Keshavan, M. S. (2014). Mirror neuron dysfunction in schizophrenia and its functional implications: a systematic review. Schizophrenia Research, 160(1–3), 9–19. doi: 10.1016/j.schres.2014.10.040.CrossRefPubMedGoogle Scholar
  31. Moriya, J., Kakeda, S., Abe, O., Goto, N., Yoshimura, R., Hori, H., et al. (2010). Gray and white matter volumetric and diffusion tensor imaging (DTI) analyses in the early stage of first-episode schizophrenia. Schizophrenia Research, 116(2–3), 196–203. doi: 10.1016/j.schres.2009.10.002.CrossRefPubMedGoogle Scholar
  32. Pasternak, O., Westin, C. F., Bouix, S., Seidman, L. J., Goldstein, J. M., Woo, T. U., et al. (2012). Excessive extracellular volume reveals a neurodegenerative pattern in schizophrenia onset, [Research support, N.I.H., extramural research support, Non-U.S. Gov't research support, U.S. Gov't, Non-P.H.S.]. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(48), 17365–17372. doi: 10.1523/JNEUROSCI.2904-12.2012.CrossRefGoogle Scholar
  33. Perrin, J. S., Leonard, G., Perron, M., Pike, G. B., Pitiot, A., Richer, L., et al. (2009). Sex differences in the growth of white matter during adolescence. NeuroImage, 45(4), 1055–1066. doi: 10.1016/j.neuroimage.2009.01.023.CrossRefPubMedGoogle Scholar
  34. Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., & Di Chiro, G. (1996). Diffusion tensor MR imaging of the human brain. Radiology, 201(3), 637–648. doi: 10.1148/radiology.201.3.8939209.CrossRefPubMedGoogle Scholar
  35. Pinkham, A. E. (2014). Social cognition in schizophrenia. The Journal of Clinical Psychiatry, 75(Suppl 2), 14–19. doi: 10.4088/JCP.13065su1.04.CrossRefPubMedGoogle Scholar
  36. Quintana, J., Davidson, T., Kovalik, E., Marder, S. R., & Mazziotta, J. C. (2001). A compensatory mirror cortical mechanism for facial affect processing in schizophrenia, [Research support, Non-U.S. Gov't research support, U.S. Gov't, Non-P.H.S. Research support, U.S. Gov't, P.H.S.]. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 25(6), 915–924. doi: 10.1016/S0893-133X(01)00304-9.CrossRefGoogle Scholar
  37. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research. Cognitive Brain Research, 3(2), 131–141.CrossRefPubMedGoogle Scholar
  38. Rowley, H. A., Grant, P. E., & Roberts, T. P. (1999). Diffusion MR imaging. Theory and applications, [Review]. Neuroimaging Clinics of North America, 9(2), 343–361.PubMedGoogle Scholar
  39. Thakkar, K. N., Peterman, J. S., & Park, S. (2014). Altered brain activation during action imitation and observation in schizophrenia: a translational approach to investigating social dysfunction in schizophrenia. The American Journal of Psychiatry, 171(5), 539–548. doi: 10.1176/appi.ajp.2013.13040498.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tseng, C. E., Chien, Y. L., Liu, C. M., Wang, H. L., Hwu, H. G., & Tseng, W. Y. (2015). Altered cortical structures and tract integrity of the mirror neuron system in association with symptoms of schizophrenia. Psychiatry Research, 231(3), 286–291. doi: 10.1016/j.pscychresns.2015.01.010.CrossRefPubMedGoogle Scholar
  41. Warach, S., Chien, D., Li, W., Ronthal, M., & Edelman, R. R. (1992). Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology, 42(9), 1717–1723.CrossRefPubMedGoogle Scholar
  42. Westlye, L. T., Walhovd, K. B., Dale, A. M., Bjornerud, A., Due-Tonnessen, P., Engvig, A., et al. (2010). Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cerebral Cortex, 20(9), 2055–2068. doi: 10.1093/cercor/bhp280.CrossRefPubMedGoogle Scholar
  43. Woods, S. W. (2003). Chlorpromazine equivalent doses for the newer atypical antipsychotics, [Research support, Non-U.S. Gov't research support, U.S. Gov't, P.H.S. Review]. The Journal of Clinical Psychiatry, 64(6), 663–667.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yukiko Saito
    • 1
    • 2
  • Marek Kubicki
    • 1
    • 6
  • Inga Koerte
    • 1
    • 3
  • Tatsui Otsuka
    • 1
  • Yogesh Rathi
    • 1
  • Ofer Pasternak
    • 1
  • Sylvain Bouix
    • 1
  • Ryan Eckbo
    • 1
  • Zora Kikinis
    • 1
  • Christian Clemm von Hohenberg
    • 1
    • 4
  • Tomohide Roppongi
    • 1
  • Elisabetta Del Re
    • 1
    • 5
  • Takeshi Asami
    • 1
  • Sang-Hyuk Lee
    • 1
  • Sarina Karmacharya
    • 1
  • Raquelle I. Mesholam-Gately
    • 7
  • Larry J. Seidman
    • 6
    • 7
  • James Levitt
    • 1
    • 5
  • Robert W. McCarley
    • 5
  • Martha E. Shenton
    • 1
    • 5
  • Margaret A. Niznikiewicz
    • 1
    • 5
  1. 1.Psychiatry Neuroimaging Laboratory, Departments of Psychiatry and RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBoylstonUSA
  2. 2.Department of NeuropsychiatryKansai Medical UniversityOsakaJapan
  3. 3.Department of Child and Adolescent Psychiatry, Psychosomatic, and PsychotherapyLudwig-Maximilian-UniversityMunichGermany
  4. 4.Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical CenterBostonUSA
  5. 5.Department of PsychiatryCentral Institute of Mental HealthMannheimGermany
  6. 6.VA Boston Healthcare System, Brockton DivisionBrocktonUSA
  7. 7.Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations