Brain Imaging and Behavior

, Volume 12, Issue 1, pp 96–108 | Cite as

Effects of social adversity and HIV on subcortical shape and neurocognitive function

  • April D. Thames
  • Taylor P. Kuhn
  • Zanjbeel Mahmood
  • Robert M. Bilder
  • Timothy J. Williamson
  • Elyse J. Singer
  • Alyssa Arentoft
Original Research


The purpose of the current study was to examine the independent and interactive effects of social adversity (SA) and HIV infection on subcortical shape alterations and cognitive functions. Participants included HIV+ (n = 70) and HIV- (n = 23) individuals who underwent MRI, neurocognitive and clinical assessment, in addition to completing questionnaires from which responses were used to create an SA score. Bilateral amygdalae and hippocampi were extracted from T1-weighted images. Parametric statistical analyses were used to compare the radial distance of the structure surface to a median curve to determine the presence of localized shape differences as a function of HIV, SA and their interaction. Next, multiple regression was used to examine the interactive association between HIV and SA with cognitive performance data. An HIV*SA interactive effect was found on the shape of the right amygdala and left hippocampus. Specifically, HIV-infected participants (but not HIV-uninfected controls) who evidenced higher levels of SA displayed an inward deformation of the surface consistent with reduced volume of these structures. We found interactive effects of HIV and SA on learning/memory performance. These results suggest that HIV+ individuals may be more vulnerable to neurological and cognitive changes in the hippocampus and amygdala as a function of SA than HIV- individuals, and that SA indicators of childhood SES and perceived racial discrimination are important components of adversity that are associated with cognitive performance.


Human immunodeficiency virus Hippocampus Amygdala Adversity Structural neuroimaging Cognition 



We would like to thank William Cunningham, M.D., M.P.H. and Ronald Hays, Ph.D. for their helpful comments and suggestions on the manuscript.

We would like to acknowledge the following funding sources:

National Institute of Mental Health (NIMH) K23 MH095661 (PI: A. Thames)

Dr. Kuhn is supported through a National Institute of Mental Health T32 Postdoctoral Fellowship (Kuhn, MH 19535).

Mr. Williamson is supported through a National Institute of Mental Health Predoctoral Fellowship (Williamson, MH 15750)

Compliance with ethical standards

This study was funded by National Institute of Mental Health (NIMH) K23 MH095661 (PI: A. Thames)

Conflict of interest

Dr. April Thames declares that she has no conflict of interest.

Dr. Taylor Kuhn declares that he has no conflict of interest.

Ms. Zanjbeel Mahmood declares that she has no conflict of interest.

Dr. Robert Bilder declares that he has no conflict of interest.

Mr. Timothy Williamson declares that he has no conflict of interest.

Dr. Elyse Singer declares that she has no conflict of interest.

Dr. Alyssa Arentoft declares no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study. All procedures were approved by UCLA Institutional Review Board.


  1. Adler, N. E., Boyce, T., Chesney, M. A., Cohen, S., Folkman, S., et al. (1994). Socioeconomic status and health: the challenge of the gradient. American Psychologist, 49, 15–24.CrossRefPubMedGoogle Scholar
  2. Allison, P. (2012). When can you safely ignore multicollinearity? Statistical Horizons. Last modified September 10, 2012.Google Scholar
  3. Alvarez-Uria, G., Naik, P. K., Pakam, R., & Midde, M. (2012). Early HIV viral load determination after initiating first-line antiretroviral therapy for indentifying patients with high risk of developing virological failure: data from a cohort study in a resource-limited setting. Tropical Medicine & International Health, 17, 1152–1155. doi: 10.1111/j.1365-3156.2012.02982.x.CrossRefGoogle Scholar
  4. Arentoft, A., Byrd, D., Monzones, J., Coulehan, K., Fuentes, A., Rosario, A., et al. (2015). Socioeconomic status and neuropsychological functioning: associations in an ethnically diverse HIV+ cohort. The Clinical Neuropsychologist, 29(2), 232–254.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barnes, L. L., Lewis, T. T., Begeny, C. T., Yu, L., Bennett, D. A., & Wilson, R. S. (2012). Perceived discrimination and cognition in older African Americans. Journal of the International Neuropsychological Society, 18(5), 856.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the beck depression inventory-II. San Antonio: Psychological Corporation, 1, 82.Google Scholar
  7. Becker, B. W., Thames, A. D., Woo, E., Castellon, S. A., & Hinkin, C. H. (2011). Longitudinal change in cognitive function and medication adherence in HIV-infected adults. AIDS and Behavior, 15(8), 1888–1894.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bosch, N. M., Riese, H., Reijneveld, S. A., Bakker, M. P., Verhulst, F. C., Ormel, J., & Oldehinkel, A. J. (2012). Timing matters: long term effects of adversities from prenatal period up to adolescence on adolescents’ cortisol stress response. The TRAILS study. Psychoneuroendocrinology, 37(9), 1439–1447.CrossRefPubMedGoogle Scholar
  9. Castelo, J. M. B., Sherman, S. J., Courtney, M. G., Melrose, R. J., & Stern, C. E. (2006). Altered hippocampal-prefrontal activation in HIV patients during episodic memory encoding. Neurology, 66(11), 1688–1695.CrossRefPubMedGoogle Scholar
  10. Centers for Disease Control (2015). HIV in African Americans. Fast Facts. Retrived online from:
  11. Clark, U. S., Cohen, R. A., Sweet, L. H., Gongvatana, A., Devlin, K. N., Hana, G. N., et al. (2012). Effects of HIV and early life stress on amygdala morphometry and neurocognitive function. Journal of the International Neuropsychological Society, 18(04), 657–668.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Contrada, R. J., Ashmore, R. D., Gary, M. L., Coups, E., Egeth, J. D., Sewell, A., et al. (2001). Measures of ethnicity-related stress: psychometric properties, ethnic group differences, and associations with well-being. Journal of Applied Social Psychology, 31(9), 1775–1820.CrossRefGoogle Scholar
  13. Costafreda, S. G., Dinov, I. D., Zhuowen, T., Shi, Y., Liu, C.-Y., Kloszewska, I., Mecocci, P., Soininen, H., Tsolaki, M., Vellas, B., Wahlund, L.-O., Spenger, C., Toga, A. W., Lovestone, S., & Simmons, A. (2011). Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. NeuroImage, 56(1), 212–219.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Csernansky, J. G., Schindler, M. K., Splinter, N. R., Wang, L., Gado, M., Selemon, L. D., et al. (2004). Abnormalities of thalamic volume and shape in schizophrenia. American Journal of Psychiatry, 161(5), 896–902.CrossRefPubMedGoogle Scholar
  15. Cunningham, W. E., Hays, R. D., Duan, N., Andersen, R., Nakazono, T. T., Bozzette, S. A., & Shapiro, M. F. (2005). The effect of socioeconomic status on the survival of people receiving care for HIV infection in the United States. Journal of Health Care for the Poor and Underserved, 16(4), 655–676.CrossRefPubMedGoogle Scholar
  16. Eiland, L., & McEwen, B. S. (2012). Early life stress followed by subsequent adult chronic stress potentiates anxiety and blunts hippocampal structural remodeling. Hippocampus, 22(1), 82–91.CrossRefPubMedGoogle Scholar
  17. Entringer, S., Buss, C., Kumsta, R., Hellhammer, D. H., Wadhwa, P. D., & Wust, S. (2009). Prenatal psychosocial stress exposure is associated with subsequent working memory performance in young women. Behavioral Neuroscience, 123, 886–893.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fernández-Espejo, D., Bekinschtein, T., Monti, M. M., Pickard, J. D., Junque, C., Coleman, M. R., & Owen, A. M. (2011). Diffusion weighted imaging distinguishes the vegetative state from the minimally conscious state. NeuroImage, 54(1), 103–112.CrossRefPubMedGoogle Scholar
  19. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.CrossRefPubMedGoogle Scholar
  20. Frodl, T., & O'Keane, V. (2013). How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiology of Disease, 52, 24–37.CrossRefPubMedGoogle Scholar
  21. Hanson, J. L., Chandra, A., Wolfe, B. L., & Pollak, S. D. (2011). Association between income and the hippocampus. PloS One, 6(5), e18712.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hanson, J. L., Nacewicz, B. M., Sutterer, M. J., Cayo, A. A., Schaefer, S. M., Rudolph, K. D., et al. (2015). Behavioral problems after early life stress: contributions of the hippocampus and amygdala. Biological Psychiatry, 77(4), 314–323.CrossRefPubMedGoogle Scholar
  23. Hayano, F., Nakamura, M., Asami, T., Uehara, K., Yoshida, T., Roppongi, T., et al. (2009). Smaller amygdala is associated with anxiety in patients with panic disorder. Psychiatry and Clinical Neurosciences, 63(3), 266–276.CrossRefPubMedGoogle Scholar
  24. Heaton, R. K., Marcotte, T. D., Mindt, M. R., Sadek, J., Moore, D. J., Bentley, H., et al. (2004). The impact of HIV-associated neuropsychological impairment on everyday functioning. Journal of the International Neuropsychological Society, 10(03), 317–331.CrossRefPubMedGoogle Scholar
  25. Heaton, R. K., Clifford, D. B., Franklin, D. R., Woods, S. P., Ake, C., Vaida, F., et al. (2010). HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy CHARTER study. Neurology, 75(23), 2087–2096.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Heaton, R. K., Franklin, D. R., Ellis, R. J., McCutchan, J. A., Letendre, S. L., LeBlanc, S., et al. (2011). HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. Journal of Neurovirology, 17(1), 3–16.CrossRefPubMedGoogle Scholar
  27. Hellemans, K. G., Sliwowska, J. H., Verma, P., & Weinberg, J. (2010). Prenatal alcohol exposure: fetal programming and later life vulnerability to stress, depression and anxiety disorders. Neuroscience & Biobehavioral Reviews, 34(6), 791–807.CrossRefGoogle Scholar
  28. Herman, J. P., & Cullinan, W. E. (1997). Neurocircuitry of stress: central control of the hypothalamo–pituitary–adrenocortical axis. Trends in Neurosciences, 20(2), 78–84.CrossRefPubMedGoogle Scholar
  29. Hollingshead, A. B. & Redlich, F. C. (2007). Social class and mental illness: a community study. 1958. American Journal of Public Health, 97(10), 1756–1757.Google Scholar
  30. Hughes, E. J., Bond, J., Svrckova, P., Makropoulos, A., Ball, G., Sharp, D. J., David Edwards, A., Hajnal, J. V., & Counsell, S. J. (2012). Regional changes in thalamic shape and volume with increasing age. NeuroImage, 63(3), 1134–1142.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ibrahim, F., Anderson, J., Bukutu, C., & Elford, J. (2008). Social and economic hardship among people living with HIV in London. HIV Medicine, 9(8), 616–624.CrossRefPubMedGoogle Scholar
  32. Jacobson, L., & Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical Axis. Endocrine Reviews, 12(2), 118–134.CrossRefPubMedGoogle Scholar
  33. Jednoróg, K., Altarelli, I., Monzalvo, K., Fluss, J., Dubois, J., et al. (2012). Correction: the influence of socioeconomic status on children’s brain structure. PloS One, 7(10). doi: 10.1371/annotation/47661de2-2c53-4396-9f88-06b5ad233566.
  34. Kim, P., Evans, G. W., Angstadt, M., Ho, S. S., Sripada, C. S., Swain, J. E., et al. (2013). Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proceedings of the National Academy of Sciences, 110(46), 18442–18447.CrossRefGoogle Scholar
  35. Kumar, M., Kumar, A. M., Morgan, R., Szapocznik, J., & Eisdorfer, C. (1993). Abnormal pituitary-adrenocortical response in early HIV-1 infection. Journal of Aquired Immune Deficiency Syndrome, 6, 61–65.Google Scholar
  36. Kumar, M., Kumar, A. M., Waldrop, D., Antoni, M. H., & Eisdorfer, C. (2003). HIV-1 infection and its impact on the HPA Axis, cytokines, and cognition. Stress, 6(3), 167–172.CrossRefPubMedGoogle Scholar
  37. Lawson, G. M., Duda, J. T., Avants, B. B., Wu, J., & Farah, M. J. (2013). Associations between children's socioeconomic status and prefrontal cortical thickness. Developmental Science, 16(5), 641–652.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lorant, V., Deliege, D., Eaton, W., Robert, A., Philippot, P., & Ansseau, M. (2003). Socioeconomic inequalities in depression: a meta-analysis. American journal of epidemiology., 157(2), 98–112.CrossRefPubMedGoogle Scholar
  39. Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434–445.CrossRefPubMedGoogle Scholar
  40. Maki, P. M., Cohen, M. H., Weber, K., Little, D. M., Fornelli, D., Rubin, L. H., et al. (2009). Impairments in memory and hippocampal function in HIV-positive vs HIV-negative women: a preliminary study. Neurology, 72(19), 1661–1668.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Maki, P. M., Rubin, L. H., Valcour, V., Martin, E., Crystal, H., Young, M., et al. (2015). Cognitive function in women with HIV findings from the Women's interagency HIV study. Neurology, 84(3), 231–240.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Massana, G., Serra-Grabulosa, J. M., Salgado-Pineda, P., Gastó, C., Junqué, C., Massana, J., et al. (2003). Amygdalar atrophy in panic disorder patients detected by volumetric magnetic resonance imaging. NeuroImage, 19(1), 80–90.CrossRefPubMedGoogle Scholar
  43. McEwen, B. S., & Gianaros, P. J. (2010). Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Annals of the New York Academy of Sciences, 1186, 190–222.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Montez, J. K., Bromberger, J. T., Harlow, S. D., Kravitz, H. M., & Matthews, K. A. (2016). Life-course socioeconomic status and metabolic syndrome among midlife women. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences. doi: 10.1093/geronb/gbw014.
  45. Moore, D. J., Masliah, E., Rippeth, J. D., Gonzalez, R., Carey, C. L., Cherner, M., et al. (2006). Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS, 20(6), 879–887.CrossRefPubMedGoogle Scholar
  46. Noble, K. G., Grieve, S. M., Korgaonkar, M. S., Engelhardt, L. E., Griffith, E. Y., Williams, L. M., & Brickman, A. M. (2012). Hippocampal volume varies with educational attainment across the life-span. Frontiers in Human Neuroscience, 6, 307.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ong, D., Walterfang, M., Malhi, G. S., Styner, M., Velakoulis, D., & Pantelis, C. (2012). Size and shape of the caudate nucleus in individuals with bipolar affective disorder. The Australian and New Zealand Journal of Psychiatry, 46(4), 340–351.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Patterson, S., Moran, P., Epel, E., Sinclair, E., Kemeny, M., Deeks, S.G., Bacchetti, P., Acree, M., Epling, L., Kirschbaum, C., Hecht, F.M. (2013). Cortisol patterns are associated with T cell activation in HIV. PLOS One: Retrieved online from
  49. Pesonen, A. K., Räikkönen, K., Feldt, K., Heinonen, K., Osmond, C., Phillips, D. I., et al. (2010). Childhood separation experience predicts HPA axis hormonal responses in late adulthood: a natural experiment of World War II. Psychoneuroendocrinology, 35(5), 758–767.CrossRefPubMedGoogle Scholar
  50. Rabkin, J. G., McElhiney, M., Ferrando, S. J., Van Gorp, W., & Lin, S. H. (2004). Predictors of employment of men with HIV/AIDS: a longitudinal study. Psychosomatic Medicine, 66(1), 72–78.CrossRefPubMedGoogle Scholar
  51. Rao, U., Chen, L. A., Bidesi, A. S., Shad, M. U., Thomas, M. A., & Hammen, C. L. (2010). Hippocampal changes associated with early-life adversity and vulnerability to depression. Biological Psychiatry, 67(4), 357–364.CrossRefPubMedGoogle Scholar
  52. Richards, M., & Wadsworth, M. E. J. (2004). Long term effects of early adversity on cognitive function. Archives of Disease in Childhood, 89(10), 922–927.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rubin, L. H., Cook, J. A., Weber, K. M., Cohen, M. H., Martin, E., Valcour, V., Milam, J., Anastos, K., Young, M. A., Alden, C., Gustafson, D. R., & Maki, P. M. (2015). The association of perceived stress and verbal memory is greater in HIV-infected versus HIV-uninfected women. Journal of Neurovirology, 21(4), 422–432 PMID: 25791344.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sapolsky, R. M. (1996). Why stress is bad for your brain. Science, 273(5276), 749–750.CrossRefPubMedGoogle Scholar
  55. Schuster, M. A., Collins, R., Cunningham, W. E., Morton, S. C., Zierler, S., Wong, M., & Kanouse, D. E. (2005). Perceived discrimination in clinical care in a nationally representative sample of HIV-infected adults receiving health care. Journal of General Internal Medicine, 20(9), 807–813.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Shonkoff, J. P., Garner, A. S., Siegel, B. S., Dobbins, M. I., Earls, M. F., McGuinn, L., et al. (2012). The lifelong effects of early childhood adversity and toxic stress. Pediatrics, 129(1), e232–e246.CrossRefPubMedGoogle Scholar
  57. Spies, G. & Seedat, S. (2014). Depression and resilience in women with HIV and early life stress: does trauma play a mediating role? A cross-sectional study 4(2).Google Scholar
  58. Spies, G., Fennema-Notestine, C., Cherner, M., & Seedat, S. (2016). Changes in cognitive function in women with HIV infection and early life stress. AIDS Care, 29(1), 14–23.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Spitzer, R. L., Williams, J. B., Gibbon, M., & First, M. B. (1995). Structured clinical interview for DSM-IV (SCID). New York: Biometrics Research.Google Scholar
  60. Staff, R. T., Murray, A. D., Ahearn, T. S., Mustafa, N., Fox, H. C., & Whalley, L. J. (2012). Childhood socioeconomic status and adult brain size: childhood socioeconomic status influences adult hippocampal size. Annals of Neurology, 71(5), 653–660.CrossRefPubMedGoogle Scholar
  61. Steptoe, A., & Marmot, M. (2003). Burden of psychosocial adversity and vulnerability in middle age: associations with biobehavioral risk factors and quality of life. Psychosomatic Medicine, 65(6), 1029–1037.CrossRefPubMedGoogle Scholar
  62. Tang, X., Holland, D., Dale, A. M., Younes, L., & Miller, M. I. (2014). Shape abnormalities of subcortical and ventricular structures in mild cognitive impairment and Alzheimer's disease: detecting, quantifying, and predicting. Human Brain Mapping, 35(8), 3701–3725.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Taylor, J., & Turner, J. (2002). Perceived discrimination, social stress, and depression in the transition to adulthood: racial contrasts. Social Psychology Quarterly, 65(3), 213–225.CrossRefGoogle Scholar
  64. Thames, A. D., Hinkin, C. H., Byrd, D. A., Bilder, R. M., Duff, K. J., Mindt, M. R., et al. (2013). Effects of stereotype threat, perceived discrimination, and examiner race on neuropsychological performance: simple as black and white? Journal of the International Neuropsychological Society, 19(05), 583–593.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Thomason, M. E., Marusak, H. A., Tocco, M. A., Vila, A. M., McGarragle, O., & Rosenberg, D. R. (2015). Altered amygdala connectivity in urban youth exposed to trauma. Social Cognitive and Affective Neuroscience, 10(11), 1460–1468.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Tottenham, N., Hare, T. A., Quinn, B. T., McCarry, T. W., Nurse, M., Gilhooly, T., et al. (2010). Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Developmental Science, 13(1), 46–61.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Toussaint, L., Shields, G. S., Dorn, G., & Slavich, G. M. (2016). Effects of lifetime stress exposure on mental and physical health in young adulthood: how stress degrades and forgiveness protects health. Journal of Health Psychology, 21(6), 1004–1014.CrossRefPubMedGoogle Scholar
  68. Tozzi, V., Balestra, P., Bellagamba, R., Corpolongo, A., Salvatori, M. F., Visco-Comandini, U., et al. (2007). Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. Journal of Acquired Immune Deficiency Syndromes, 45(2), 174–182.CrossRefPubMedGoogle Scholar
  69. Troxel, W. M., Matthews, K. A., Bromberger, J. T., & Sutton-Tyrrell, K. (2003). Chronic stress burden, discrimination, and subclinical carotid artery disease in African American and Caucasian women. Health Psychology, 22(3), 300.CrossRefPubMedGoogle Scholar
  70. Van den Bogaard, S. J., Dumas, E. M., Ferrarini, L., Milles, J., van Buchem, M. A., van der Grond, J., & Roos, R. A. (2011). Shape analysis of subcortical nuclei in Huntington's disease, global versus local atrophy–A results from the TRACK-HD study. Journal of Neurological Sciences, 307(1-2), 60–68.CrossRefGoogle Scholar
  71. Wade, B. S., Valcour, V. G., Wendelken-Riegelhaupt, L., Esmaeili-Firidouni, P., Joshi, S. H., Gutman, B. A., & Thompson, P. M. (2015). Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort. NeuroImage: Clinical, 9, 564–573.CrossRefGoogle Scholar
  72. Weniger, G., Lange, C., Sachsse, U., & Irle, E. (2008). Amygdala and hippocampal volumes and cognition in adult survivors of childhood abuse with dissociative disorders. Acta Psychiatrica Scandinavica, 118(4), 281–290.CrossRefPubMedGoogle Scholar
  73. WHO (2010). Antiretroviral therapy for HIV infection in adults and adolescents 2010. adult2010/en/index.html. Accessed 29 Sept 2016.
  74. Wicks, S., Hjern, A., Gunnell, D., Lewis, G., & Dalman, C. (2005). Social adversity in childhood and the risk of developing psychosis: a national cohort study. American Journal of Psychiatry, 162(9), 1652–1657.CrossRefPubMedGoogle Scholar
  75. Williams, D. R., & Mohammed, S. A. (2009). Discrimination and racial disparities in health: evidence and needed research. Journal of Behavioral Medicine, 32(1), 20–47.CrossRefPubMedGoogle Scholar
  76. Williams, D. R., Priest, N., & Anderson, N. B. (2016). Understanding associations among race, socioeconomic status, and health: patterns and prospects. Health Psychology, 35(4), 407.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Williamson, T. J., Mahmood, Z., Kuhn, T. K., & Thames, A. D. (2016). Differential relationships between social adversity and depressive symptoms by HIV status and racial/ethnic identity. Health Psychology. doi: 10.1037/hea0000458.PubMedCentralGoogle Scholar
  78. Winkleby, M. A., & Cubbin, C. (2003). Influence of individual and neighbourhood socioeconomic status on mortality among black, Mexican-American, and white women and men in the United States. Journal of Epidemiology and Community Health, 57(6), 444–452.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Woon, F. L., & Hedges, D. W. (2008). Hippocampal and amygdala volumes in children and adults with childhood maltreatment-related posttraumatic stress disorder: a meta-analysis. Hippocampus, 18(8), 729–736.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • April D. Thames
    • 1
  • Taylor P. Kuhn
    • 1
    • 2
  • Zanjbeel Mahmood
    • 1
    • 3
  • Robert M. Bilder
    • 1
    • 3
  • Timothy J. Williamson
    • 3
  • Elyse J. Singer
    • 1
  • Alyssa Arentoft
    • 4
  1. 1.David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA
  2. 2.Greater Los Angeles VA Healthcare SystemLos AngelesUSA
  3. 3.Department of PsychologyUniversity of California Los AngelesLos AngelesUSA
  4. 4.California State University NorthridgeNorthridgeUSA

Personalised recommendations