Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 1, pp 64–77 | Cite as

Recovery from chemotherapy-induced white matter changes in young breast cancer survivors?

  • Thibo Billiet
  • Louise Emsell
  • Mathieu Vandenbulcke
  • Ronald Peeters
  • Daan Christiaens
  • Alexander Leemans
  • Wim Van Hecke
  • Ann Smeets
  • Frederic Amant
  • Stefan Sunaert
  • Sabine Deprez
Original Research

Abstract

In a previous longitudinal diffusion tensor imaging (DTI) study, we observed cerebral white matter (WM) alterations (reduced fractional anisotropy (FA)) related to decreased cognitive performance 3–5 months after chemotherapy-treatment (t2) when compared to baseline (t1) (Deprez et al. in Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30(3), 274–281. doi:10.1200/JCO.2011.36.8571, 2012). The current study investigates the evolution and the nature of these previously observed microstructural changes. Twenty-five young women with early-stage breast cancer who received chemotherapy treatment (C+), 14 who did not receive chemotherapy (C-) and 15 healthy controls (HC) previously studied, underwent reassessment 3–4 years after treatment (t3). We assessed (1) longitudinal changes of cognitive performance and FA and (2) cross-sectional group differences in myelin-water-imaging and multishell diffusion MRI metrics at t3. MRI metrics were assessed on a voxel-by-voxel basis and in regions-of-interest (ROI) in which previous WM injury was detected. Longitudinal results: Mixed-effects modeling revealed significant group-time interactions for verbal memory and processing speed (p < 0.05) reflecting regained performance in the C+ group at t3. Furthermore, in chemotherapy-treated patients, FA returned to baseline levels at t3 in all ROIs (p < 0.002), whereas no FA changes were seen in controls. Additionally, FA increase from t2 to t3 correlated with time since treatment in two of the four regions (r = 0.40, p < 0.05). Cross-sectional results: Advanced diffusion MRI and myelin-water imaging metrics in the ROIs did not differ between groups. Similarly, no whole-brain voxelwise differences were detected. Initial WM alterations and reduced cognitive performance following chemotherapy-treatment were found to recover in a group of young breast cancer survivors three to four years after treatment.

Keywords

Chemotherapy Cognitive impairment Breast cancer MR diffusion imaging MR myelin water imaging White matter 

Notes

Acknowledgements

We would like to thank all participants for their time invested in this study and Dr. Frederik Dekeyzer for support with statistical analysis. This work was supported by Research Foundation Flanders (FWO - G.0354.06) and by Stichting tegen Kanker.

Compliance with ethical standards

Funding

This work was supported by Research Foundation Flanders (FWO - G.0354.06) and by Stichting tegen Kanker.

Conflict of interest

All authors declare that they have no conflict of interest to report.

Ethical approval

All procedures were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Abraham, J., Haut, M. W., Moran, M. T., Filburn, S., Lemiuex, S., & Kuwabara, H. (2008). Adjuvant chemotherapy for breast cancer: effects on cerebral white matter seen in diffusion tensor imaging. Clinical Breast Cancer, 8(1), 88–91. doi: 10.3816/CBC.2008.n.007.CrossRefPubMedGoogle Scholar
  2. Ahles, T. A., Saykin, A. J., McDonald, B. C., Li, Y., Furstenberg, C. T., Hanscom, B. S., et al. (2010). Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 28(29), 4434–4440. doi: 10.1200/JCO.2009.27.0827.CrossRefGoogle Scholar
  3. Ashburner, J., & Friston, K. J. (2011). http://www.fil.ion.ucl.ac.uk/spm/software/spm8.
  4. Baltan, S. (2015). Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia. Neuropharmacology. doi: 10.1016/j.neuropharm.2015.09.015.PubMedPubMedCentralGoogle Scholar
  5. Bell, R. P., Foxe, J. J., Nierenberg, J., Hoptman, M. J., & Garavan, H. (2011). Assessing white matter integrity as a function of abstinence duration in former cocaine-dependent individuals. Drug and Alcohol Dependence, 114(2–3), 159–168. doi: 10.1016/j.drugalcdep.2010.10.001.PubMedGoogle Scholar
  6. Biglia, N., Bounous, V. E., Malabaila, A., Palmisano, D., Torta, D. M., D'Alonzo, M., et al. (2012). Objective and self-reported cognitive dysfunction in breast cancer women treated with chemotherapy: a prospective study. Eur J Cancer Care (Engl), 21(4), 485–492. doi: 10.1111/j.1365-2354.2011.01320.x.CrossRefGoogle Scholar
  7. Billiet, T., Madler, B., D'Arco, F., Peeters, R., Deprez, S., Plasschaert, E., et al. (2014). Characterizing the microstructural basis of "unidentified bright objects" in neurofibromatosis type 1: a combined in vivo multicomponent T2 relaxation and multi-shell diffusion MRI analysis. NeuroImage. Clinical, 4, 649–658. doi: 10.1016/j.nicl.2014.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Billiet, T., Vandenbulcke, M., Madler, B., Peeters, R., Dhollander, T., Zhang, H., et al. (2015). Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiology of Aging, 36(6), 2107–2121. doi: 10.1016/j.neurobiolaging.2015.02.029.CrossRefPubMedGoogle Scholar
  9. Bosscher, R. J., Koning, H., & Van Meurs, R. (1986). Reliability and validity of the Beck depression inventory in a Dutch college population. Psychological Reports, 58(3), 696–698. doi: 10.2466/pr0.1986.58.3.696.CrossRefPubMedGoogle Scholar
  10. Bower, J. E., & Ganz, P. A. (2015). Symptoms: fatigue and cognitive dysfunction. Advances in Experimental Medicine and Biology, 862, 53–75. doi: 10.1007/978-3-319-16366-6_5.CrossRefPubMedGoogle Scholar
  11. Briones, T. L., & Woods, J. (2014). Dysregulation in myelination mediated by persistent neuroinflammation: possible mechanisms in chemotherapy-related cognitive impairment. Brain, Behavior, and Immunity, 35, 23–32. doi: 10.1016/j.bbi.2013.07.175.CrossRefPubMedGoogle Scholar
  12. Broadbent, D. E., Cooper, P. F., FitzGerald, P., & Parkes, K. R. (1982). The cognitive failures questionnaire (CFQ) and its correlates. The British Journal of Clinical Psychology, 21(Pt 1), 1–16.CrossRefPubMedGoogle Scholar
  13. Concha, L. (2014). A macroscopic view of microstructure: using diffusion-weighted images to infer damage, repair, and plasticity of white matter. Neuroscience, 276, 14–28. doi: 10.1016/j.neuroscience.2013.09.004.CrossRefPubMedGoogle Scholar
  14. Conroy, S. K., McDonald, B. C., Ahles, T. A., West, J. D., & Saykin, A. J. (2013). Chemotherapy-induced amenorrhea: a prospective study of brain activation changes and neurocognitive correlates. Brain Imaging and Behavior, 7(4), 491–500. doi: 10.1007/s11682-013-9240-5.CrossRefPubMedGoogle Scholar
  15. de Ruiter, M. B., & Schagen, S. B. (2013). Functional MRI studies in non-CNS cancers. Brain Imaging and Behavior, 7(4), 388–408. doi: 10.1007/s11682-013-9249-9.CrossRefPubMedGoogle Scholar
  16. de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., Caan, M., Douaud, G., et al. (2011). Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging. Human Brain Mapping. doi: 10.1002/hbm.21422.Google Scholar
  17. De Vries, J., Michielsen, H., Van Heck, G. L., & Drent, M. (2004). Measuring fatigue in sarcoidosis: the fatigue assessment scale (FAS). British Journal of Health Psychology, 9(Pt 3), 279–291. doi: 10.1348/1359107041557048.CrossRefPubMedGoogle Scholar
  18. Deprez, S., Amant, F., Yigit, R., Porke, K., Verhoeven, J., Van den Stock, J., et al. (2011). Chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning in breast cancer patients. Human Brain Mapping, 32(3), 480–493. doi: 10.1002/hbm.21033.CrossRefPubMedGoogle Scholar
  19. Deprez, S., Amant, F., Smeets, A., Peeters, R., Leemans, A., Van Hecke, W., et al. (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30(3), 274–281. doi: 10.1200/JCO.2011.36.8571.CrossRefGoogle Scholar
  20. Deprez, S., Billiet, T., Sunaert, S., & Leemans, A. (2013a). Diffusion tensor MRI of chemotherapy-induced cognitive impairment in non-CNS cancer patients: a review. Brain Imaging and Behavior, 7(4), 409–435. doi: 10.1007/s11682-012-9220-1.CrossRefPubMedGoogle Scholar
  21. Deprez, S., Vandenbulcke, M., Peeters, R., Emsell, L., Amant, F., & Sunaert, S. (2013b). The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task. Neuropsychologia, 51(11), 2251–2260. doi: 10.1016/j.neuropsychologia.2013.07.024.CrossRefPubMedGoogle Scholar
  22. Dietrich, J., Prust, M., & Kaiser, J. (2015). Chemotherapy, cognitive impairment and hippocampal toxicity. Neuroscience. doi: 10.1016/j.neuroscience.2015.06.016.PubMedGoogle Scholar
  23. Fan, H. G., Houede-Tchen, N., Yi, Q. L., Chemerynsky, I., Downie, F. P., Sabate, K., et al. (2005). Fatigue, menopausal symptoms, and cognitive function in women after adjuvant chemotherapy for breast cancer: 1- and 2-year follow-up of a prospective controlled study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 23(31), 8025–8032. doi: 10.1200/JCO.2005.01.6550.CrossRefGoogle Scholar
  24. Han, R., Yang, Y. M., Dietrich, J., Luebke, A., Mayer-Proschel, M., & Noble, M. (2008). Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. Journal of Biology, 7(4), 12. doi: 10.1186/jbiol69.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Harrison, D. M., Caffo, B. S., Shiee, N., Farrell, J. A., Bazin, P. L., Farrell, S. K., et al. (2011). Longitudinal changes in diffusion tensor-based quantitative MRI in multiple sclerosis. Neurology, 76(2), 179–186. doi: 10.1212/WNL.0b013e318206ca61.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hermelink, K., Kuchenhoff, H., Untch, M., Bauerfeind, I., Lux, M. P., Buhner, M., et al. (2010). Two different sides of 'chemobrain': determinants and nondeterminants of self-perceived cognitive dysfunction in a prospective, randomized, multicenter study. Psychooncology, 19(12), 1321–1328. doi: 10.1002/pon.1695.CrossRefPubMedGoogle Scholar
  27. Hua, C., Merchant, T. E., Gajjar, A., Broniscer, A., Zhang, Y., Li, Y., et al. (2012). Brain tumor therapy-induced changes in normal-appearing brainstem measured with longitudinal diffusion tensor imaging. International Journal of Radiation Oncology, Biology, Physics, 82(5), 2047–2054. doi: 10.1016/j.ijrobp.2011.03.057.CrossRefPubMedGoogle Scholar
  28. Janelsins, M. C., Kesler, S. R., Ahles, T. A., & Morrow, G. R. (2014). Prevalence, mechanisms, and management of cancer-related cognitive impairment. International Review of Psychiatry, 26(1), 102–113. doi: 10.3109/09540261.2013.864260.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jensen, J. H., Helpern, J. A., Ramani, A., Lu, H., & Kaczynski, K. (2005). Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 53(6), 1432–1440. doi: 10.1002/mrm.20508.CrossRefGoogle Scholar
  30. Jones, D. K., Knosche, T. R., & Turner, R. (2013). White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. NeuroImage, 73, 239–254. doi: 10.1016/j.neuroimage.2012.06.081.CrossRefPubMedGoogle Scholar
  31. Kesler, S., Hadi Hosseini, S. M., Heckler, C., Janelsins, M., Palesh, O., Mustian, K., et al. (2013). Cognitive training for improving executive function in chemotherapy-treated breast cancer survivors. Clinical Breast Cancer, 13(4), 299–306. doi: 10.1016/j.clbc.2013.02.004.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kesler, S. R., Watson, C. L., & Blayney, D. W. (2015). Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer. Neurobiology of Aging, 36(8), 2429–2442. doi: 10.1016/j.neurobiolaging.2015.04.015.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Koppelmans, V., Breteler, M. M., Boogerd, W., Seynaeve, C., Gundy, C., & Schagen, S. B. (2012). Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30(10), 1080–1086. doi: 10.1200/JCO.2011.37.0189.CrossRefGoogle Scholar
  34. Koppelmans, V., de Groot, M., de Ruiter, M. B., Boogerd, W., Seynaeve, C., Vernooij, M. W., et al. (2014). Global and focal white matter integrity in breast cancer survivors 20 years after adjuvant chemotherapy. Human Brain Mapping, 35(3), 889–899. doi: 10.1002/hbm.22221.CrossRefPubMedGoogle Scholar
  35. Kreukels, B. P., van Dam, F. S., Ridderinkhof, K. R., Boogerd, W., & Schagen, S. B. (2008). Persistent neurocognitive problems after adjuvant chemotherapy for breast cancer. Clinical Breast Cancer, 8(1), 80–87. doi: 10.3816/CBC.2008.n.006.CrossRefPubMedGoogle Scholar
  36. Laule, C., Vavasour, I. M., Kolind, S. H., Li, D. K., Traboulsee, T. L., Moore, G. R., et al. (2007). Magnetic resonance imaging of myelin. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 4(3), 460–484. doi: 10.1016/j.nurt.2007.05.004.CrossRefGoogle Scholar
  37. Leemans, A., & Jones, D. K. (2009). The B-matrix must Be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine, 61(6), 1336–1349. doi: 10.1002/Mrm.21890.CrossRefPubMedGoogle Scholar
  38. Leemans, A., Jeurissen, B., Sijbers, J., & Jones, D. K. (2009). ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In Proc. Intl. Soc. Mag. Reson. Med., Honolulu, 2009 (Vol. 17, pp. 3537)Google Scholar
  39. Lepage, C., Smith, A. M., Moreau, J., Barlow-Krelina, E., Wallis, N., Collins, B., et al. (2014). A prospective study of grey matter and cognitive function alterations in chemotherapy-treated breast cancer patients. Springerplus, 3, 444. doi: 10.1186/2193-1801-3-444.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lovden, M., Bodammer, N. C., Kuhn, S., Kaufmann, J., Schutze, H., Tempelmann, C., et al. (2010). Experience-dependent plasticity of white-matter microstructure extends into old age. Neuropsychologia, 48(13), 3878–3883. doi: 10.1016/j.neuropsychologia.2010.08.026.CrossRefPubMedGoogle Scholar
  41. MacKay, A., Laule, C., Vavasour, I., Bjarnason, T., Kolind, S., & Madler, B. (2006). Insights into brain microstructure from the T2 distribution. Magnetic Resonance Imaging, 24(4), 515–525. doi: 10.1016/j.mri.2005.12.037.CrossRefPubMedGoogle Scholar
  42. McDonald, B. C., & Saykin, A. J. (2013). Alterations in brain structure related to breast cancer and its treatment: chemotherapy and other considerations. Brain Imaging and Behavior, 7(4), 374–387. doi: 10.1007/s11682-013-9256-x.CrossRefPubMedGoogle Scholar
  43. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2010). Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Research and Treatment, 123(3), 819–828. doi: 10.1007/s10549-010-1088-4.CrossRefPubMedPubMedCentralGoogle Scholar
  44. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30(20), 2500–2508. doi: 10.1200/JCO.2011.38.5674.CrossRefGoogle Scholar
  45. Moore-Maxwell, C. A., Datto, M. B., & Hulette, C. M. (2004). Chemotherapy-induced toxic leukoencephalopathy causes a wide range of symptoms: a series of four autopsies. Modern Pathology, 17(2), 241–247. doi: 10.1038/modpathol.3800049.CrossRefPubMedGoogle Scholar
  46. Morean, D. F., O'Dwyer, L., & Cherney, L. R. (2015). Therapies for cognitive deficits associated with chemotherapy for breast cancer: a systematic review of objective outcomes. Archives of Physical Medicine and Rehabilitation. doi: 10.1016/j.apmr.2015.05.012.PubMedGoogle Scholar
  47. Pfefferbaum, A., Rosenbloom, M. J., Chu, W., Sassoon, S. A., Rohlfing, T., Pohl, K. M., et al. (2014). White matter microstructural recovery with abstinence and decline with relapse in alcohol dependence interacts with normal ageing: a controlled longitudinal DTI study. Lancet Psychiatry, 1(3), 202–212. doi: 10.1016/S2215-0366(14)70301-3.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pomykala, K. L., de Ruiter, M. B., Deprez, S., McDonald, B. C., & Silverman, D. H. (2013). Integrating imaging findings in evaluating the post-chemotherapy brain. Brain Imaging and Behavior, 7(4), 436–452. doi: 10.1007/s11682-013-9239-y.CrossRefPubMedGoogle Scholar
  49. Poot, D. H., den Dekker, A. J., Achten, E., Verhoye, M., & Sijbers, J. (2010). Optimal experimental design for diffusion kurtosis imaging. IEEE Transactions on Medical Imaging, 29(3), 819–829. doi: 10.1109/TMI.2009.2037915.CrossRefPubMedGoogle Scholar
  50. Prasloski, T., Madler, B., Xiang, Q. S., MacKay, A., & Jones, C. (2012a). Applications of stimulated echo correction to multicomponent T2 analysis. Magnetic Resonance in Medicine, 67(6), 1803–1814. doi: 10.1002/Mrm.23157.CrossRefPubMedGoogle Scholar
  51. Prasloski, T., Rauscher, A., MacKay, A. L., Hodgson, M., Vavasour, I. M., Laule, C., et al. (2012b). Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence. NeuroImage, 63(1), 533–539. doi: 10.1016/j.neuroimage.2012.06.064.CrossRefPubMedGoogle Scholar
  52. Sage, C. A., Van Hecke, W., Peeters, R., Sijbers, J., Robberecht, W., Parizel, P., et al. (2009). Quantitative diffusion tensor imaging in amyotrophic lateral sclerosis: revisited. Human Brain Mapping, 30(11), 3657–3675. doi: 10.1002/hbm.20794.CrossRefPubMedGoogle Scholar
  53. Saykin, A. J., de Ruiter, M. B., McDonald, B. C., Deprez, S., & Silverman, D. H. (2013). Neuroimaging biomarkers and cognitive function in non-CNS cancer and its treatment: current status and recommendations for future research. Brain Imaging and Behavior, 7(4), 363–373. doi: 10.1007/s11682-013-9283-7.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schagen, S. B., Muller, M. J., Boogerd, W., Rosenbrand, R. M., van Rhijn, D., Rodenhuis, S., et al. (2002). Late effects of adjuvant chemotherapy on cognitive function: a follow-up study in breast cancer patients. Annals of Oncology, 13(9), 1387–1397.CrossRefPubMedGoogle Scholar
  55. Schmand, B., Bakker, D., Saan, R., & Louman, J. (1991). The Dutch reading test for adults: a measure of premorbid intelligence level. Tijdschrift voor Gerontologie en Geriatrie, 22(1), 15–19.PubMedGoogle Scholar
  56. Seigers, R., Schagen, S. B., Van Tellingen, O., & Dietrich, J. (2013). Chemotherapy-related cognitive dysfunction: current animal studies and future directions. Brain Imaging and Behavior, 7(4), 453–459. doi: 10.1007/s11682-013-9250-3.CrossRefPubMedGoogle Scholar
  57. Shilling, V., & Jenkins, V. (2007). Self-reported cognitive problems in women receiving adjuvant therapy for breast cancer. European Journal of Oncology Nursing, 11(1), 6–15. doi: 10.1016/j.ejon.2006.02.005.CrossRefPubMedGoogle Scholar
  58. Sidaros, A., Engberg, A. W., Sidaros, K., Liptrot, M. G., Herning, M., Petersen, P., et al. (2008). Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain : a journal of neurology, 131(Pt 2), 559–572. doi: 10.1093/brain/awm294.CrossRefGoogle Scholar
  59. Spielberger, C. D. (1985). Assessment of state and trait anxiety: conceptual and methodological issues. The Southern Psychologist, 2, 6–16.Google Scholar
  60. Stouten-Kemperman, M. M., de Ruiter, M. B., Caan, M. W., Boogerd, W., Kerst, M. J., Reneman, L., et al. (2015a). Lower cognitive performance and white matter changes in testicular cancer survivors 10 years after chemotherapy. Human Brain Mapping. doi: 10.1002/hbm.22942.PubMedGoogle Scholar
  61. Stouten-Kemperman, M. M., de Ruiter, M. B., Koppelmans, V., Boogerd, W., Reneman, L., & Schagen, S. B. (2015b). Neurotoxicity in breast cancer survivors >/=10 years post-treatment is dependent on treatment type. Brain Imaging and Behavior, 9(2), 275–284. doi: 10.1007/s11682-014-9305-0.CrossRefPubMedGoogle Scholar
  62. Tager, F. A., McKinley, P. S., Schnabel, F. R., El-Tamer, M., Cheung, Y. K., Fang, Y., et al. (2010). The cognitive effects of chemotherapy in post-menopausal breast cancer patients: a controlled longitudinal study. Breast Cancer Research and Treatment, 123(1), 25–34. doi: 10.1007/s10549-009-0606-8.CrossRefPubMedGoogle Scholar
  63. Takao, H., Hayashi, N., Kabasawa, H., & Ohtomo, K. (2012). Effect of scanner in longitudinal diffusion tensor imaging studies. Human Brain Mapping, 33(2), 466–477. doi: 10.1002/hbm.21225.CrossRefPubMedGoogle Scholar
  64. Takeuchi, H., Sekiguchi, A., Taki, Y., Yokoyama, S., Yomogida, Y., Komuro, N., et al. (2010). Training of working memory impacts structural connectivity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(9), 3297–3303. doi: 10.1523/JNEUROSCI.4611-09.2010.CrossRefGoogle Scholar
  65. Tournier, J. D., Mori, S., & Leemans, A. (2011). Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 65(6), 1532–1556. doi: 10.1002/mrm.22924.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Van Hecke, W., Sijbers, J., D'Agostino, E., Maes, F., De Backer, S., Vandervliet, E., et al. (2008). On the construction of an inter-subject diffusion tensor magnetic resonance atlas of the healthy human brain. NeuroImage, 43(1), 69–80. doi: 10.1016/j.neuroimage.2008.07.006.CrossRefPubMedGoogle Scholar
  67. Van Hecke, W., Leemans, A., De Backer, S., Jeurissen, B., Parizel, P. M., & Sijbers, J. (2010). Comparing isotropic and anisotropic smoothing for voxel-based DTI analyses: a simulation study. Human Brain Mapping, 31(1), 98–114. doi: 10.1002/hbm.20848.PubMedGoogle Scholar
  68. Van Hecke, W., Leemans, A., Sage, C. A., Emsell, L., Veraart, J., Sijbers, J., et al. (2011). The effect of template selection on diffusion tensor voxel-based analysis results. NeuroImage, 55(2), 566–573. doi: 10.1016/j.neuroimage.2010.12.005.CrossRefPubMedGoogle Scholar
  69. Vearncombe, K. J., Rolfe, M., Andrew, B., Pachana, N. A., Wright, M., & Beadle, G. (2011). Cognitive effects of chemotherapy-induced menopause in breast cancer. The Clinical Neuropsychologist, 25(8), 1295–1313. doi: 10.1080/13854046.2011.631586.CrossRefPubMedGoogle Scholar
  70. Vichaya, E. G., Chiu, G. S., Krukowski, K., Lacourt, T. E., Kavelaars, A., Dantzer, R., et al. (2015). Mechanisms of chemotherapy-induced behavioral toxicities. Frontiers in Neuroscience, 9, 131. doi: 10.3389/fnins.2015.00131.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Von Ah, D., Carpenter, J. S., Saykin, A., Monahan, P., Wu, J., Yu, M., et al. (2012). Advanced cognitive training for breast cancer survivors: a randomized controlled trial. Breast Cancer Research and Treatment, 135(3), 799–809. doi: 10.1007/s10549-012-2210-6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wefel, J. S., & Schagen, S. B. (2012). Chemotherapy-related cognitive dysfunction. Current Neurology and Neuroscience Reports, 12(3), 267–275. doi: 10.1007/s11910-012-0264-9.CrossRefPubMedGoogle Scholar
  73. Wefel, J. S., Saleeba, A. K., Buzdar, A. U., & Meyers, C. A. (2010). Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer, 116(14), 3348–3356. doi: 10.1002/cncr.25098.CrossRefPubMedGoogle Scholar
  74. Wefel, J. S., Kesler, S. R., Noll, K. R., & Schagen, S. B. (2015). Clinical characteristics, pathophysiology, and management of noncentral nervous system cancer-related cognitive impairment in adults. CA: a Cancer Journal for Clinicians, 65(2), 123–138. doi: 10.3322/caac.21258.Google Scholar
  75. Weis, J., Poppelreuter, M., & Bartsch, H. H. (2009). Cognitive deficits as long-term side-effects of adjuvant therapy in breast cancer patients: 'subjective' complaints and 'objective' neuropsychological test results. Psychooncology, 18(7), 775–782. doi: 10.1002/pon.1472.CrossRefPubMedGoogle Scholar
  76. Whittall, K. P., & Mackay, A. L. (1989). Quantitative interpretation of Nmr relaxation data. Journal of Magnetic Resonance, 84(1), 134–152. doi: 10.1016/0022-2364(89)90011-5.Google Scholar
  77. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage, 61(4), 1000–1016. doi: 10.1016/j.neuroimage.2012.03.072.CrossRefPubMedGoogle Scholar
  78. Zwart, W., Terra, H., Linn, S. C., & Schagen, S. B. (2015). Cognitive effects of endocrine therapy for breast cancer: keep calm and carry on? Nature Reviews. Clinical Oncology, 12(10), 597–606. doi: 10.1038/nrclinonc.2015.124.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Thibo Billiet
    • 1
    • 2
  • Louise Emsell
    • 3
  • Mathieu Vandenbulcke
    • 3
  • Ronald Peeters
    • 1
    • 2
  • Daan Christiaens
    • 4
  • Alexander Leemans
    • 5
  • Wim Van Hecke
    • 6
  • Ann Smeets
    • 7
  • Frederic Amant
    • 8
  • Stefan Sunaert
    • 1
    • 2
  • Sabine Deprez
    • 1
    • 2
  1. 1.Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
  2. 2.Department of Imaging and PathologyKU LeuvenLeuvenBelgium
  3. 3.Department of Old Age PsychiatryUniversity Hospitals LeuvenLeuvenBelgium
  4. 4.Department of Electrical Engineering (ESAT), Processing of Speech and Images (PSI)KU LeuvenLeuvenBelgium
  5. 5.Image Sciences InstituteUniversity Medical Center UtrechtUtrechtThe Netherlands
  6. 6.IcometrixLeuvenBelgium
  7. 7.Leuven Multidisciplinary Breast CenterUniversity Hospitals LeuvenLeuvenBelgium
  8. 8.Department of Obstetrics and Gynecology, Gynecological OncologyUniversity HospitalsLeuvenBelgium

Personalised recommendations