Brain Imaging and Behavior

, Volume 11, Issue 2, pp 304–317 | Cite as

Relationships between years of education, regional grey matter volumes, and working memory-related brain activity in healthy older adults

  • Benjamin Boller
  • Samira Mellah
  • Gabriel Ducharme-Laliberté
  • Sylvie Belleville
SI: Resilience/Reserve in AD

Abstract

The aim of this study was to examine the relationships between educational attainment, regional grey matter volume, and functional working memory-related brain activation in older adults. The final sample included 32 healthy older adults with 8 to 22 years of education. Structural magnetic resonance imaging (MRI) was used to measure regional volume and functional MRI was used to measure activation associated with performing an n-back task. A positive correlation was found between years of education and cortical grey matter volume in the right medial and middle frontal gyri, in the middle and posterior cingulate gyri, and in the right inferior parietal lobule. The education by age interaction was significant for cortical grey matter volume in the left middle frontal gyrus and in the right medial cingulate gyrus. In this region, the volume loss related to age was larger in the low than high-education group. The education by age interaction was also significant for task-related activity in the left superior, middle and medial frontal gyri due to the fact that activation increased with age in those with higher education. No correlation was found between regions that are structurally related with education and those that are functionally related with education and age. The data suggest a protective effect of education on cortical volume. Furthermore, the brain regions involved in the working memory network are getting more activated with age in those with higher educational attainment.

Keywords

Educational attainment Working memory N-back task Functional magnetic resonance imaging Voxel-based morphometry Aging 

Notes

Acknowledgments

This work was supported by a grant to S.B. from the Natural Sciences and Engineering Research Council of Canada (NSERC). B.B. was supported by postdoctoral fellowships from the Fondation Institut de Gériatrie de Montréal and the Fondation Lemaire. Authors would like to thank Bianca Bier, Chloé de Boysson, and Emilie Lepage for their help in testing participants.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Adam, S., Bonsang, E., Grotz, C., & Perelman, S. (2013). Occupational activity and cognitive reserve: implications in terms of prevention of cognitive aging and Alzheimer’s disease. Clinical Interventions in Aging, 8, 377–390.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Adjutant General’s Office (1944). Army individual test battery: Manual of directions and scoring. Washington: War Department.Google Scholar
  3. Arenaza-Urquijo, E. M., Landeau, B., La Joie, R., Mevel, K., Mézenge, F., Perrotin, A., & Chételat, G. (2013). Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. NeuroImage, 83, 450–457.CrossRefPubMedGoogle Scholar
  4. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.CrossRefPubMedGoogle Scholar
  5. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry: the methods. NeuroImage, 11(6 Pt 1), 805–821.CrossRefPubMedGoogle Scholar
  6. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851.CrossRefPubMedGoogle Scholar
  7. Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral Prefrontal Contributions to Human Working Memory. Cortex, 49(5), 1195–1205.CrossRefPubMedGoogle Scholar
  8. Bartrés-Faz, D., Solé-Padullés, C., Junqué, C., Rami, L., Bosch, B., Bargalló, N., & Molinuevo, J. L. (2009). Interactions of cognitive reserve with regional brain anatomy and brain function during a working memory task in healthy elders. Biological Psychology, 80(2), 256–259.CrossRefPubMedGoogle Scholar
  9. Belleville, S., Mellah, S., de Boysson, C., Demonet, J.-F., & Bier, B. (2014). The pattern and loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention. PloS One, 9(8), e102710.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Borella, E., Carretti, B., & De Beni, R. (2008). Working memory and inhibition across the adult life-span. Acta Psychologica, 128, 33–44.CrossRefPubMedGoogle Scholar
  11. Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5(1), 49–62.CrossRefPubMedGoogle Scholar
  12. Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using the MarsBar toolbox for SPM 99. NeuroImage, 16(2), S497.Google Scholar
  13. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85–100.CrossRefPubMedGoogle Scholar
  14. Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., et al. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20–26.CrossRefPubMedGoogle Scholar
  15. Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex, 46(4), 462–473.CrossRefPubMedGoogle Scholar
  16. Casanova, R., Srikanth, R., Baer, A., Laurienti, P. J., Burdette, J. H., Hayasaka, S., et al. (2007). Biological parametric mapping: A statistical toolbox for multimodality brain image analysis. NeuroImage, 34(1), 137–143.CrossRefPubMedGoogle Scholar
  17. Christensen, H., Batterham, P. J., Mackinnon, A. J., Anstey, K. J., Wen, W., & Sachdev, P. S. (2009). Education, atrophy, and cognitive change in an epidemiological sample in early old age. The American Journal of Geriatric Psychiatry, 17(3), 218–226.CrossRefPubMedGoogle Scholar
  18. Coffey, C. E., Saxton, J. A., Ratcliff, G., Bryan, R. N., & Lucke, J. F. (1999). Relation of education to brain size in normal aging: implications for the reserve hypothesis. Neurology, 53(1), 189–196.CrossRefPubMedGoogle Scholar
  19. Cordière, A., Cloutier, S., & Belleville, S. (2016). Protective effects of early-life and late-life cognitive experiences on the age-related decline of working memory. Manuscript submitted for publication.Google Scholar
  20. Curiati, P. K., Tamashiro, J. H., Squarzoni, P., Duran, F. L. S., Santos, L. C., Wajngarten, M., & Alves, T. C. T. F. (2009). Brain structural variability due to aging and gender in cognitively healthy elders: results from the Sao Paulo ageing and health study. American Journal of Neuroradiology, 30(10), 1850–1856.CrossRefPubMedGoogle Scholar
  21. Dobbs, A. R., & Rule, B. G. (1989). Adult age differences in working memory. Psychology and Aging, 4, 500–503.CrossRefPubMedGoogle Scholar
  22. Foos, P. W., & Wright, L. (1992). Adult age differences in the storage of information in working memory. Experimental Aging Research, 18, 51–57.CrossRefPubMedGoogle Scholar
  23. Foubert-Samier, A., Catheline, G., Amieva, H., Dilharreguy, B., Helmer, C., Allard, M., & Dartigues, J.-F. (2012). Education, occupation, leisure activities, and brain reserve: a population-based study. Neurobiology of Aging, 33(2), 423.e15–423.e25.CrossRefGoogle Scholar
  24. Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 21–36.CrossRefPubMedGoogle Scholar
  25. Habeck, C., Hilton, H. J., Zarahn, E., Flynn, J., Moeller, J., & Stern, Y. (2003). Relation of cognitive reserve and task performance to expression of regional covariance networks in an event-related fMRI study of nonverbal memory. NeuroImage, 20(3), 1723–1733.CrossRefPubMedGoogle Scholar
  26. Hale, S., Rose, N. S., Myerson, J., Strube, M. J., Sommers, M., Tye-Murray, N., & Spehar, B. (2011). The structure of working memory abilities across the adult life span. Psychology and Aging, 26, 92–110.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Haut, M. W., Kuwabara, H., Moran, M. T., Leach, S., Arias, R., & Knight, D. (2005). The effect of education on age-related functional activation during working memory. Aging, Neuropsychology, and Cognition, 12(2), 216–229.CrossRefGoogle Scholar
  28. Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., & Koeppe, R. A. (1997). Verbal Working Memory Load Affects Regional Brain Activation as Measured by PET. Journal of Cognitive Neuroscience, 9(4), 462–475.CrossRefPubMedGoogle Scholar
  29. Kalpouzos, G., Chételat, G., Baron, J.-C., Landeau, B., Mevel, K., Godeau, C., & Desgranges, B. (2009). Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiology of Aging, 30(1), 112–124.CrossRefPubMedGoogle Scholar
  30. Katzman, R. (1993). Education and the prevalence of dementia and Alzheimer’s disease. Neurology, 43, 13–20.CrossRefPubMedGoogle Scholar
  31. Kidron, D., Black, S. E., Stanchev, P., Buck, B., Szalai, J. P., Parker, J., & Bronskill, M. J. (1997). Quantitative MR volumetry in Alzheimer’s disease. Topographic markers and the effects of sex and education. Neurology, 49(6), 1504–1512.CrossRefPubMedGoogle Scholar
  32. Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M.-C., & Parsey, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Li, H.-J., Hou, X.-H., Liu, H.-H., Yue, C.-L., Lu, G.-M., & Zuo, X.-N. (2015). Putting age-related task activation into large-scale brain networks: A meta-analysis of 114 fMRI studies on healthy aging. Neuroscience & Biobehavioral Reviews, 57, 156–174.CrossRefGoogle Scholar
  34. Matsuda, H. (2013). Voxel-based morphometry of brain MRI in normal aging and Alzheimer’s disease. Aging and Disease, 4(1), 29–37.PubMedGoogle Scholar
  35. Mattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Berman, K. F., Das, S., & Weinberger, D. R. (2006). Neurophysiological correlates of age-related changes in working memory capacity. Neuroscience Letters, 392(1–2), 32–37.CrossRefPubMedGoogle Scholar
  36. Nagel, I. E., Preuschhof, C., Li, S.-C., Nyberg, L., Bäckman, L., Lindenberger, U., & Heekeren, H. R. (2009). Performance level modulates adult age differences in brain activation during spatial working memory. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22552–22557.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., & Chertkow, H. (2005). The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.CrossRefPubMedGoogle Scholar
  38. Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292–305.CrossRefPubMedGoogle Scholar
  39. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.CrossRefPubMedGoogle Scholar
  40. Reuter-Lorenz, P. (2002). New visions of the aging mind and brain. Trends in Cognitive Sciences, 6(9), 394.CrossRefPubMedGoogle Scholar
  41. Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182.CrossRefGoogle Scholar
  42. Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12(1), 174–187.CrossRefPubMedGoogle Scholar
  43. Ridgway, G. R., Omar, R., Ourselin, S., Hill, D. L. G., Warren, J. D., & Fox, N. C. (2009). Issues with threshold masking in voxel-based morphometry of atrophied brains. NeuroImage, 44(1), 99–111.CrossRefPubMedGoogle Scholar
  44. Rossetti, H. C., Lacritz, L. H., Cullum, C. M., & Weiner, M. F. (2011). Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology, 77(13), 1272–1275.CrossRefPubMedGoogle Scholar
  45. Rypma, B., & D’Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience, 3(5), 509–515.CrossRefPubMedGoogle Scholar
  46. Rzezak, P., Squarzoni, P., Duran, F. L., Alves, T. D. T. F., Tamashiro-Duran, J., Bottino, C. M., & Busatto, G. F. (2015). Relationship between Brain Age-Related Reduction in Gray Matter and Educational Attainment. PloS One, 10(10), e0140945.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Salthouse, T. A., Babcock, R. L., & Shaw, R. J. (1991). Effects of adult age on structural and operational capacities in working memory. Psychology and Aging, 6(1), 118–127.CrossRefPubMedGoogle Scholar
  48. Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology, 7, 273–295.CrossRefGoogle Scholar
  49. Scarmeas, N., Zarahn, E., Anderson, K. E., Hilton, J., Flynn, J., Van Heertum, R. L., & Stern, Y. (2003). Cognitive reserve modulates functional brain responses during memory tasks: a PET study in healthy young and elderly subjects. NeuroImage, 19(3), 1215–1227.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schneider-Garces, N. J., Gordon, B. A., Brumback-Peltz, C. R., Shin, E., Lee, Y., Sutton, B. P., & Fabiani, M. (2010). Span, CRUNCH, and beyond: working memory capacity and the aging brain. Journal of Cognitive Neuroscience, 22(4), 655–669.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117, 34–50.CrossRefGoogle Scholar
  52. Solé-Padullés, C., Bartrés-Faz, D., Junqué, C., Vendrell, P., Rami, L., Clemente, I. C., & Molinuevo, J. L. (2009). Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 30(7), 1114–1124.CrossRefPubMedGoogle Scholar
  53. Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309–315.CrossRefPubMedGoogle Scholar
  54. Springer, M. V., McIntosh, A. R., Winocur, G., & Grady, C. L. (2005). The relation between brain activity during memory tasks and years of education in young and older adults. Neuropsychology, 19(2), 181–192.CrossRefPubMedGoogle Scholar
  55. Steffener, J., Habeck, C., O’Shea, D., Razlighi, Q., Bherer, L., & Stern, Y. (2016). Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiology of Aging, 40, 138–144.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–460.CrossRefPubMedGoogle Scholar
  57. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 2015–2028.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurology, 11, 1006–1012.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K. E., Hilton, H. J., et al. (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex, 15(4), 394–402.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Terribilli, D., Schaufelberger, M. S., Duran, F. L. S., Zanetti, M. V., Curiati, P. K., Menezes, P. R., et al. (2011). Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiology of Aging, 32(2), 354–368.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wechsler, D. (1997). Wechsler Adult Intelligence Scale - (Third ed.). New-York: The Psychological Corporation.Google Scholar
  62. Wingfield, A., Stine, E. A., Lahar, C. J., & Aberdeen, J. S. (1988). Does the capacity of working memory change with age? Experimental Aging Research, 14(2–3), 103–107.CrossRefPubMedGoogle Scholar
  63. Yang, X., Beason-Held, L., Resnick, S. M., & Landman, B. A. (2011). Biological parametric mapping with robust and non-parametric statistics. NeuroImage, 57(2), 423–430.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M. B., & Leirer, V. O. (1983). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17, 37–49.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Benjamin Boller
    • 1
    • 2
  • Samira Mellah
    • 1
  • Gabriel Ducharme-Laliberté
    • 1
    • 2
  • Sylvie Belleville
    • 1
    • 2
  1. 1.Centre de recherche de l’Institut universitaire de gériatrie de MontréalMontréalCanada
  2. 2.Psychology Department, Université de MontréalMontréalCanada

Personalised recommendations