Brain Imaging and Behavior

, Volume 11, Issue 2, pp 401–409 | Cite as

Genetic resilience to amyloid related cognitive decline

  • Timothy J. Hohman
  • Logan Dumitrescu
  • Nancy J. Cox
  • Angela L. Jefferson
  • for the Alzheimer’s Neuroimaging Initiative
SI: Resilience/Reserve in AD


Preclinical Alzheimer’s disease (AD) is characterized by amyloid deposition in the absence of overt clinical impairment. There is substantial heterogeneity in the long-term clinical outcomes among amyloid positive individuals, yet limited work has focused on identifying molecular factors driving resilience from amyloid-related cognitive impairment. We apply a recently developed predicted gene expression analysis (PrediXcan) to identify genes that modify the association between baseline amyloid deposition and longitudinal cognitive changes. Participants free of clinical AD (n = 631) were selected from the AD Neuroimaging Initiative (ADNI) who had a baseline positron emission tomography measure of amyloid deposition (quantified as a standard uptake value ratio), longitudinal neuropsychological data, and genetic data. PrediXcan was used to impute gene expression levels across 15 heart and brain tissues. Mixed effect regression models assessed the interaction between predicted gene expression levels and amyloid deposition on longitudinal cognitive outcomes. The predicted gene expression levels for two genes in the coronary artery (CNTLN, PROK1) and two genes in the atrial appendage (PRSS50, PROK1) interacted with amyloid deposition on episodic memory performance. The predicted gene expression levels for two additional genes (TMC4 in the basal ganglia and HMBS in the aorta) interacted with amyloid deposition on executive function performance. Post-hoc analyses provide additional validation of the HMBS and PROK1 effects across two independent subsets of ADNI using two additional metrics of amyloid deposition. These results highlight a subset of unique candidate genes of resilience and provide evidence that cell-cycle regulation, angiogenesis, and heme biosynthesis likely play a role in AD progression.


Amyloid Resilience Genetics PrediXcan Cognition PET 


Compliance with ethical standards

This research was supported in part by the Building Interdisciplinary Research Careers in Women’s Health program (K12-HD043483, TJH), K01-AG049164 (TJH), R01-HL111516 (ALJ), R01-AG034962 (ALJ), K24-AG046373 (ALJ), and the Vanderbilt Memory & Alzheimer’s Center.

Conflict of interest

The authors report no conflicts of interest.

Informed consent

Informed consent was obtained from all participants included in the study.

Supplementary material

11682_2016_9615_MOESM1_ESM.docx (34 kb)
ESM 1 (DOCX 34 kb)
11682_2016_9615_MOESM2_ESM.xlsx (2.1 mb)
ESM 2 (XLSX 2194 kb)


  1. Alonso, A. C., Zaidi, T., Grundke-Iqbal, I., & Iqbal, K. (1994). Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proceedings of the National Academy of Sciences, 91(12), 5562–5566.CrossRefGoogle Scholar
  2. Beeri, M. S., Rapp, M., Silverman, J. M., Schmeidler, J., Grossman, H. T., Fallon, J. T., et al. (2006). Coronary artery disease is associated with Alzheimer disease neuropathology in APOE4 carriers. Neurology, 66(9), 1399–1404.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Blasko, I., Lederer, W., Oberbauer, H., Walch, T., Kemmler, G., Hinterhuber, H., et al. (2006). Measurement of thirteen biological markers in CSF of patients with Alzheimer’s disease and other dementias. Dementia and Geriatric Cognitive Disorders, 21(1), 9–15.CrossRefPubMedGoogle Scholar
  4. Brouillet, S., Hoffmann, P., Chauvet, S., Salomon, A., Chamboredon, S., Sergent, F., et al. (2012). Revisiting the role of hCG: new regulation of the angiogenic factor EG-VEGF and its receptors. Cellular and Molecular Life Sciences, 69(9), 1537–1550. CrossRefPubMedGoogle Scholar
  5. Crane, P. K., Carle, A., Gibbons, L. E., Insel, P., Mackin, R. S., Gross, A., et al. (2012). Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging and Behavior, 6(4), 502–516.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cummings, J. L. (1993). Frontal-subcortical circuits and human behavior. Archives of Neurology, 50(8), 873–880.CrossRefPubMedGoogle Scholar
  7. Dwyer, B. E., Smith, M. A., Richardson, S. L., Perry, G., & Zhu, X. (2009). Down-regulation of aminolevulinate synthase, the rate-limiting enzyme for heme biosynthesis in Alzheimer’s disease. Neuroscience Letters, 460(2), 180–184. doi: 10.1016/j.neulet.2009.05.058.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Elliott, R. (2003). Executive functions and their disorders Imaging in clinical neuroscience. British Medical Bulletin, 65(1), 49–59.CrossRefPubMedGoogle Scholar
  9. Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K., Carroll, R. J., et al. (2015). A gene-based association method for mapping traits using reference transcriptome data. Nature Genetics, 47(9), 1091–1098.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gibbons, L. E., Carle, A. C., Mackin, R. S., Harvey, D., Mukherjee, S., Insel, P., et al. (2012). A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging and Behavior, 6(4), 517–527.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Graybiel, A. M. (2000). The basal ganglia. Current Biology, 10(14), R509–R511.CrossRefPubMedGoogle Scholar
  12. Guo, L. H., Alexopoulos, P., & Perneczky, R. (2013). Heart-type fatty acid binding protein and vascular endothelial growth factor: cerebrospinal fluid biomarker candidates for Alzheimer’s disease. European Archives of Psychiatry and Clinical Neuroscience, 263(7), 553–560.CrossRefPubMedGoogle Scholar
  13. Hohman, T. J., Bell, S. P., & Jefferson, A. L. (2015). The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: exploring interactions with biomarkers of Alzheimer disease. JAMA Neurology, 72(5), 520–529.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jack Jr., C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology, 9(1), 119–128.Google Scholar
  15. Jack Jr., C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., et al. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12(2), 207–216.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jefferson, A. L., Himali, J. J., Beiser, A. S., Au, R., Massaro, J. M., Seshadri, S., et al. (2010). Cardiac index is associated with brain aging the framingham heart study. Circulation, 122(7), 690–697.Google Scholar
  17. Jefferson, A. L., Beiser, A. S., Himali, J. J., Seshadri, S., O’Donnell, C. J., Manning, W. J., et al. (2015a). Low cardiac index is associated with incident dementia and Alzheimer Disease: the Framingham Heart Study. Circulation, 131(15), 1333–1339.Google Scholar
  18. Jefferson, A. L., Hohman, T. J., Liu, D., Haj-Hassan, S., Gifford, K. A., Benson, E. M., et al. (2015b). Adverse vascular risk is related to cognitive decline in older adults. Journal of Alzheimer’s Disease, 44(4), 1361–1373.PubMedPubMedCentralGoogle Scholar
  19. Koran, M. I., Wagener, M. A., & Hohman, T. J. (2016). Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging and Behavior. doi: 10.1007/s11682-016-9523-8.
  20. Kuijpers, M., & Hoogenraad, C. C. (2011). Centrosomes, microtubules and neuronal development. Molecular and Cellular Neurosciences, 48(4), 349–358. doi: 10.1016/j.mcn.2011.05.004.CrossRefPubMedGoogle Scholar
  21. Kurima, K., Yang, Y., Sorber, K., & Griffith, A. J. (2003). Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis. Genomics, 82(3), 300–308. doi: 10.1016/S0888–7543(03)00154-X.CrossRefPubMedGoogle Scholar
  22. Landau, S. M., Mintun, M. A., Joshi, A. D., Koeppe, R. A., Petersen, R. C., Aisen, P. S., et al. (2012). Amyloid deposition, hypometabolism, and longitudinal cognitive decline. Annals of Neurology, 72(4), 578–586.CrossRefPubMedPubMedCentralGoogle Scholar
  23. LeCouter, J., Lin, R., & Ferrara, N. (2002). Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nature Medicine, 8(9), 913–917. doi: 10.1038/nm0902-913.
  24. Lim, Y. Y., Ellis, K. A., Ames, D., Darby, D., Harrington, K., Martins, R. N., et al. (2013). Aβ amyloid, cognition, and APOE genotype in healthy older adults. Alzheimers Dement, 9(5), 538–545.CrossRefPubMedGoogle Scholar
  25. Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., et al. (2013). The Genotype-Tissue expression (GTEx) project. Nature Genetics, 45(6), 580–585. doi: 10.1038/ng.2653.CrossRefGoogle Scholar
  26. Makino, K., Umeda, K., Uezu, A., Hiragami, Y., Sakamoto, T., Ihn, H., et al. (2008). Identification and characterization of the novel centrosomal protein centlein. Biochemical and Biophysical Research Communications, 366(4), 958–962.CrossRefPubMedGoogle Scholar
  27. Moh, C., Kubiak, J. Z., Bajic, V. P., Zhu, X., Smith, M. A., & Lee, H. G. (2011). Cell cycle deregulation in the neurons of Alzheimer’s disease. Results and Problems in Cell Differentiation, 53, 565–576. doi: 10.1007/978-3-642-19065-0_23.CrossRefPubMedGoogle Scholar
  28. Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.CrossRefPubMedGoogle Scholar
  29. Mormino, E. C., Betensky, R. A., Hedden, T., Schultz, A. P., Amariglio, R. E., Rentz, D. M., et al. (2014a). Synergistic effect of β-amyloid and neurodegeneration on cognitive decline in clinically normal individuals. JAMA Neurology, 71(11), 1379–1385.Google Scholar
  30. Mormino, E. C., Betensky, R. A., Hedden, T., Schultz, A. P., Ward, A., Huijbers, W., et al. (2014b). Amyloid and APOE ε4 interact to influence short-term decline in preclinical Alzheimer disease. Neurology, 82(20), 1760–1767.Google Scholar
  31. Nizzari, M., Venezia, V., Repetto, E., Caorsi, V., Magrassi, R., Gagliani, M. C., et al. (2007). Amyloid precursor protein and Presenilin1 interact with the adaptor GRB2 and modulate ERK 1,2 signaling. The Journal of Biological Chemistry, 282(18), 13833–13844.Google Scholar
  32. Oliver, V. F., Jaffe, A. E., Song, J., Wang, G., Zhang, P., Branham, K. E., et al. (2015). Differential DNA methylation identified in the blood and retina of AMD patients. Epigenetics, 10(8), 698–707.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pikula, A., Beiser, A. S., Chen, T. C., Preis, S. R., Vorgias, D., DeCarli, C., et al. (2013). Serum brain-derived neurotrophic factor and vascular endothelial growth factor levels are associated with risk of stroke and vascular brain injury: Framingham Study. Stroke, 44(10), 2768–2775. doi: 10.1161/strokeaha.113.001447.
  34. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559–575.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rahimi, J., & Kovacs, G. G. (2014). Prevalence of mixed pathologies in the aging brain. Alzheimer's Research & Therapy, 6(9), 82.CrossRefGoogle Scholar
  36. Raj, A., Stephens, M., & Pritchard, J. K. (2014). fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics, 197(2), 573–589.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rentz, D. M., Locascio, J. J., Becker, J. A., Moran, E. K., Eng, E., Buckner, R. L., et al. (2010). Cognition, reserve, and amyloid deposition in normal aging. Annals of Neurology, 67(3), 353–364.PubMedGoogle Scholar
  38. Romito-DiGiacomo, R. R., Menegay, H., Cicero, S. A., & Herrup, K. (2007). Effects of Alzheimer’s disease on different cortical layers: the role of intrinsic differences in Aβ susceptibility. The Journal of Neuroscience, 27(32), 8496–8504.CrossRefPubMedGoogle Scholar
  39. Su, M. T., Lin, S. H., Chen, Y. C., & Kuo, P. L. (2014). Gene-gene interactions and gene polymorphisms of VEGFA and EG-VEGF gene systems in recurrent pregnancy loss. Journal of Assisted Reproduction and Genetics, 31(6), 699–705. doi: 10.1007/s10815-014-0223-2.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Tarkowski, E., Issa, R., Sjögren, M., Wallin, A., Blennow, K., Tarkowski, A., et al. (2002). Increased intrathecal levels of the angiogenic factors VEGF and TGF-β in Alzheimer’s disease and vascular dementia. Neurobiology of Aging, 23(2), 237–243.CrossRefPubMedGoogle Scholar
  41. Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O’Keeffe, S., et al. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. The Journal of Neuroscience, 34(36), 11929–11947.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhang, J. B., Li, M. F., Zhang, H. X., Li, Z. G., Sun, H. R., Zhang, J. S., et al. (2016). Association of serum vascular endothelial growth factor levels and cerebral microbleeds in patients with Alzheimer’s disease. European Journal of Neurology, 23(8), 1337–1342.Google Scholar
  43. Zhou, L., Bao, Y. L., Zhang, Y., Wu, Y., Yu, C. L., Huang, Y. X., et al. (2010). Knockdown of TSP50 inhibits cell proliferation and induces apoptosis in P19 cells. IUBMB Life, 62(11), 825–832.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Timothy J. Hohman
    • 1
  • Logan Dumitrescu
    • 1
  • Nancy J. Cox
    • 2
  • Angela L. Jefferson
    • 1
  • for the Alzheimer’s Neuroimaging Initiative
  1. 1.Vanderbilt Memory & Alzheimer’s CenterVanderbilt University Medical CenterNashvilleUSA
  2. 2.Vanderbilt Genetics Institute, Division of Genetic MedicineVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations