Brain Imaging and Behavior

, Volume 11, Issue 2, pp 410–416 | Cite as

An approach to studying the neural correlates of reserve

SI: Resilience/Reserve in AD

Abstract

The goal of this paper is to review my current understanding of the concepts of cognitive reserve (CR), brain reserve and brain maintenance, and to describe our group’s approach to using imaging to study their neural basis. I present a working model for utilizing data regarding brain integrity, clinical status, cognitive activation and CR proxies to develop analyses that can explore the neural basis of cognitive reserve and brain maintenance. The basic model assumes that the effect of brain changes on cognition is mediated by task-related activation. We treat CR as a moderator to understand how task-related activation might vary as a function of CR, or how CR might operate independently of these differences in task-related activation. My hope is that this presentation will spark discussion across groups that study these concepts, allowing us to come to some common agreement on definitions, methodology and approaches.

Keywords

Cognitive reserve Brain reserve Brain maintenance fMRI 

Notes

Acknowledgments

This work was supported by a grant from the National Institute on Aging (RO1 AG26158).

Compliance with ethical standards

Funding

This study was funded by National Institute on Aging (RO1 AG26158).

Conflict of interest

Dr. Stern declares that he has no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Adlard, P. A., Perreau, V. M., Pop, V., & Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. The Journal of Neuroscience, 25(17), 4217–4221. doi: 10.1523/JNEUROSCI.0496-05.2005.CrossRefPubMedGoogle Scholar
  2. Barulli, D. J., Rakitin, B. C., Lemaire, P., & Stern, Y. (2013). The influence of cognitive reserve on strategy selection in normal aging. Journal of the International Neuropsychological Society, 19, 1–4.CrossRefGoogle Scholar
  3. Bennett, D. A., Wilson, R. S., Schneider, J. A., Evans, D. A., Mendes De Leon, C. F., Arnold, S. E., et al. (2003). Education modifies the relation of AD pathology to level of cognitive function in older persons. Neurology, 60(12), 1909–1915.CrossRefPubMedGoogle Scholar
  4. Blumen, H. M., Gazes, Y., Habeck, C., Kumar, A., Steffener, J., Rakitin, B. C., et al. (2011). Neural networks associated with the speed-accuracy tradeoff: evidence from the response signal method. Behavioural Brain Research, 224(2), 397–402. doi: 10.1016/j.bbr.2011.06.004.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85–100.CrossRefPubMedGoogle Scholar
  6. Cabeza, R., Anderson, N. D., Locantore, J. K., & McIntosh, A. R. (2002). Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage, 17(3), 1394–1402.CrossRefPubMedGoogle Scholar
  7. Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., et al. (2006). Aerobic exercise training increases brain volume in aging humans. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 61(11), 1166–1170.CrossRefPubMedGoogle Scholar
  8. Gazes, Y., Rakitin, B. C., Habeck, C., Steffener, J., & Stern, Y. (2012). Age differences of multivariate network expressions during task-switching and their associations with behavior. Neuropsychologia, 50(14), 3509–3518. doi: 10.1016/j.neuropsychologia.2012.09.039.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gazes, Y., Habeck, C., O'Shea, D., Razlighi, Q. R., Steffener, J., & Stern, Y. (2015). Functional network mediates age-related differences in reaction time: a replication and extension study. Brain and Behavior, 5(5), e00324. doi: 10.1002/brb3.324.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Gazes, Y., Bowman, F. D., Razlighi, Q. R., O'Shea, D., Stern, Y., & Habeck, C. (2016). White matter tract covariance patterns predict age-declining cognitive abilities. NeuroImage, 125, 53–60. doi: 10.1016/j.neuroimage.2015.10.016.CrossRefPubMedGoogle Scholar
  11. Grady, C. L., Maisog, J. M., Horwitz, B., Ungerleider, L. G., Mentis, M. J., Salerno, J. A., et al. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and location. The Journal of Neuroscience, 14(3 Pt 2), 1450–1462.PubMedGoogle Scholar
  12. Habeck, C., Hilton, H. J., Zarahn, E., Flynn, J., Moeller, J., & Stern, Y. (2003). Relation of cognitive reserve and task performance to expression of regional covariance networks in an event-related fMRI study of nonverbal memory. NeuroImage, 20(3), 1723–1733.CrossRefPubMedGoogle Scholar
  13. Habeck, C., Rakitin, B. C., Moeller, J., Scarmeas, N., Zarahn, E., Brown, T., et al. (2005). An event-related fMRI study of the neural networks underlying the encoding, maintenance, and retrieval phase in a delayed-match-to-sample task. Brain Research. Cognitive Brain Research, 23(2–3), 207–220.CrossRefPubMedGoogle Scholar
  14. Habeck, C., Steffener, J., Gazes, Y., & Stern, Y. (2016). Cognitive reserve and brain maintenance: two orthogonal concepts. Cerebral Cortex (in press).Google Scholar
  15. Jack Jr., C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., et al. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207–216. doi: 10.1016/S1474-4422(12)70291-0.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jones, R. N., Manly, J., Glymour, M. M., Rentz, D. M., Jefferson, A. L., & Stern, Y. (2011). Conceptual and measurement challenges in research on cognitive reserve. Journal of the International Neuropsychological Society, 17(4), 593–601. doi: 10.1017/S1355617710001748.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Landau, S. M., Marks, S. M., Mormino, E. C., Rabinovici, G. D., Oh, H., O'Neil, J. P., et al. (2012). Association of lifetime cognitive engagement and low beta-amyloid deposition. Archives of Neurology, 69(5), 623–629. doi: 10.1001/archneurol.2011.2748.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Lindenberger, U., von Oertzen, T., Ghisletta, P., & Hertzog, C. (2011). Cross-sectional age variance extraction: what's change got to do with it? Psychology and Aging, 26(1), 34–47. doi: 10.1037/a0020525.CrossRefPubMedGoogle Scholar
  19. Madden, D. J., Turkington, T. G., Provenzale, J. M., Denny, L. L., Hawk, T. C., Gottlob, L. R., et al. (1999). Adult age differences in the functional neuroanatomy of verbal recognition memory. Human Brain Mapping, 7(2), 115–135.CrossRefPubMedGoogle Scholar
  20. Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., et al. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97(8), 4398–4403.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 23–44. doi: 10.1037/1082-989X.12.1.23.CrossRefPubMedGoogle Scholar
  22. Nyberg, L., Lovden, M., Riklund, K., Lindenberger, U., & Backman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292–305. doi: 10.1016/j.tics.2012.04.005.CrossRefPubMedGoogle Scholar
  23. Reed, B. R., Mungas, D., Farias, S. T., Harvey, D., Beckett, L., Widaman, K., et al. (2010). Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain, 133(Pt 8), 2196–2209. doi: 10.1093/brain/awq154.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Reuter-Lorenz, P. (2002). New visions of the aging mind and brain. Trends in Cognitive Sciences, 6(9), 394.CrossRefPubMedGoogle Scholar
  25. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement, 7(3), 280–292. doi: 10.1016/j.jalz.2011.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Steffener, J., & Stern, Y. (2012). Exploring the neural basis of cognitive reserve in aging. Biochimica et Biophysica Acta, 1822(3), 467–473. doi: 10.1016/j.bbadis.2011.09.012.CrossRefPubMedGoogle Scholar
  27. Steffener, J., Brickman, A. M., Rakitin, B. C., Gazes, Y., & Stern, Y. (2009). The impact of age-related changes on working memory functional activity. Brain Imaging and Behavior, 3(2), 142–153. doi: 10.1007/s11682-008-9056-x.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Steffener, J., Reuben, A., Rakitin, B. C., & Stern, Y. (2011). Supporting performance in the face of age-related neural changes: testing mechanistic roles of cognitive reserve. Brain Imaging and Behavior, 22(4), 655–669. doi: 10.1007/s11682-011-9125-4.Google Scholar
  29. Steffener, J., Barulli, D., Habeck, C., O'Shea, D., Razlighi, Q., & Stern, Y. (2014a). The role of education and verbal abilities in altering the effect of age-related gray matter differences on cognition. PloS One, 9(3), e91196. doi: 10.1371/journal.pone.0091196.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Steffener, J., Barulli, D., Habeck, C., & Stern, Y. (2014b). Neuroimaging explanations of age-related differences in task performance. Frontiers in Aging Neuroscience, 6, 46. doi: 10.3389/fnagi.2014.00046.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Steffener, J., Habeck, C., O'Shea, D., Razlighi, Q., Bherer, L., & Stern, Y. (2016). Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiology of Aging, 40, 138–144. doi: 10.1016/j.neurobiolaging.2016.01.014.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448–460.CrossRefPubMedGoogle Scholar
  33. Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015–2028. doi: 10.1016/j.neuropsychologia.2009.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Stern, Y., Zarahn, E., Hilton, H. J., Delapaz, R., Flynn, J., & Rakitin, B. (2003). Exploring the neural basis of cognitive reserve. Journal of Clinical and Experimental Neuropsychology, 5, 691–701.CrossRefGoogle Scholar
  35. Stern, Y., Zarahn, E., Habeck, C., Holtzer, R., Rakitin, B. C., Kumar, A., et al. (2008). A common neural network for cognitive reserve in verbal and object working memory in young but not old. Cerebral Cortex, 18(4), 959–967. doi: 10.1093/cercor/bhm134.CrossRefPubMedGoogle Scholar
  36. Stern, Y., Rakitin, B. C., Habeck, C., Gazes, Y., Steffener, J., Kumar, A., et al. (2012). Task difficulty modulates young-old differences in network expression. Brain Research, 1435, 130–145. doi: 10.1016/j.brainres.2011.11.061.CrossRefPubMedGoogle Scholar
  37. Valenzuela, M. J., Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2008). Lifespan mental activity predicts diminished rate of hippocampal atrophy. PloS One, 3(7), e2598. doi: 10.1371/journal.pone.0002598.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zahodne, L. B., Manly, J. J., Brickman, A. M., Siedlecki, K. L., Decarli, C., & Stern, Y. (2013). Quantifying cognitive reserve in older adults by decomposing episodic memory variance: replication and extension. Journal of the International Neuropsychological Society, 19(8), 854–862. doi: 10.1017/S1355617713000738.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zahodne, L. B., Manly, J. J., Brickman, A. M., Narkhede, A., Griffith, E. Y., Guzman, V. A., et al. (2015). Is residual memory variance a valid method for quantifying cognitive reserve? A longitudinal application. Neuropsychologia, 77, 260–266. doi: 10.1016/j.neuropsychologia.2015.09.009.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Zarahn, E., Rakitin, B., Abela, D., Flynn, J., & Stern, Y. (2007). Age-related changes in brain activation during a delayed item recognition task. Neurobiology of Aging, 28(5), 784–798. doi: 10.1016/j.neurobiolaging.2006.03.002.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Cognitive Neuroscience Division, Department of NeurologyColumbia University College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations