Brain Imaging and Behavior

, Volume 11, Issue 2, pp 552–564 | Cite as

Non redundant functional brain connectivity in schizophrenia

  • Raymond Salvador
  • Ramón Landin-Romero
  • Maria Anguera
  • Erick J. Canales-Rodríguez
  • Joaquim Radua
  • Amalia Guerrero-Pedraza
  • Salvador Sarró
  • Teresa Maristany
  • Peter J. McKenna
  • Edith Pomarol-Clotet
Original Research

Abstract

Schizophrenia is considered a disorder of abnormal brain connectivity. Although whole brain maps of averaged bivariate voxel correlations have been successfully applied to study connectivity abnormalities in schizophrenia these maps do not adequately explore the multivariate nature of brain connectivity. Here we adapt a novel method for high-dimensional regression (supervised principal component regression) to estimate brain maps of multivariate non redundant connectivity (NRC) from resting functional Magnetic Resonance Imaging (fMRI) data of 116 patients with schizophrenia and 122 matched controls. Disorder related differences in NRC involved caudate hyper-connectivity and hypo-connectivity of several cortical areas such as the dorsal cingulate, the cuneus and the right postcentral cortex. These abnormalities were coupled with abnormalities in the amplitude of signal fluctuations and, to a minor extent, with differences in the dimensionality of connectivity patterns as quantified by the number of supervised principal components. Second level seed correlation analyses linked the observed abnormalities to an additional set of brain regions relevant to schizophrenia such as the thalamus and the temporal cortex. The non redundant connectivity maps proposed here are a new tool that will complement the information provided by other already available voxel based whole brain connectivity measures.

Keywords

Schizophrenia NRC Supervised principal component regression fMRI GBC ALFF 

Notes

Acknowledgments

This work was supported by the Catalonian Government (2014SGR1573), several grants from the Plan Nacional de I + D + i and co-funded by the Instituto de Salud Carlos III-Subdirección General de Evaluación y Fomento de la Investigación and the European Regional Development Fund (FEDER): Miguel Servet Research Contracts (CP10/00596 to EP-C, CP13/00018 to RS and CP14/00041 to JR) and Research Project Grants (PI14/00292, PI14/01691, PI14/01148 and PI14/01151).

Compliance with ethical standards

Conflict of interest

Author Raymond Salvador, Author Ramón Landín-Romero, Author Maria Anguera, Author Erick J. Canales-Rodríguez, Author Joaquim Raduà, Author Amalia Guerrero-Pedraza, Author Salvador Sarró, Author Teresa Maristany, Author Peter J. McKenna and Author Edith Pomarol-Clotet declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2016_9535_MOESM1_ESM.pdf (115 kb)
ESM 1 (PDF 115 kb)

References

  1. Alderson-Day, B., McCarthy-Jones, S., & Fernyhough, C. (2015). Hearing voices in the resting brain: a review of intrinsic functional connectivity research on auditory verbal hallucinations. Neuroscience & Biobehavioral Reviews, 55, 78–87. doi: 10.1016/j.neubiorev.2015.04.016.CrossRefGoogle Scholar
  2. Anticevic, A., Brumbaugh, M. S., Winkler, A. M., Lombardo, L. E., Barrett, J., Corlett, P. R., et al. (2013). Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history. Biological Psychiatry, 73(6), 565–573. doi: 10.1016/j.biopsych.2012.07.031.CrossRefPubMedGoogle Scholar
  3. Anticevic, A., Cole, M. W., Repovs, G., Murray, J. D., Brumbaugh, M. S., Winkler, A. M., et al. (2014a). Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cerebral Cortex, 24(12), 3116–3130. doi: 10.1093/cercor/bht165.CrossRefPubMedGoogle Scholar
  4. Anticevic, A., Hu, S., Zhang, S., Savic, A., Billingslea, E., Wasylink, S., et al. (2014b). Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biological Psychiatry, 75(8), 595–605. doi: 10.1016/j.biopsych.2013.10.021.CrossRefPubMedGoogle Scholar
  5. Anticevic, A., Hu, X., Xiao, Y., Hu, J., Li, F., Bi, F., et al. (2015). Early-course unmedicated schizophrenia patients exhibit elevated prefrontal connectivity associated with longitudinal change. Journal of Neuroscience, 35(1), 267–286. doi: 10.1523/JNEUROSCI.2310-14.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bair, E., Hastie, T., Debashis, P., & Tibshirani, R. (2006). Prediction by supervised principal components. Journal of the American Statistical Association, 101, 119–137.CrossRefGoogle Scholar
  7. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.CrossRefPubMedGoogle Scholar
  8. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. Journal of Neuroscience, 29(6), 1860–1873. doi: 10.1523/JNEUROSCI.5062-08.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. doi: 10.1038/nrn2575.CrossRefPubMedGoogle Scholar
  10. Cole, M. W., Pathak, S., & Schneider, W. (2010). Identifying the brain’s most globally connected regions. NeuroImage, 49(4), 3132–3148. doi: 10.1016/j.neuroimage.2009.11.001.CrossRefPubMedGoogle Scholar
  11. Cole, M. W., Anticevic, A., Repovs, G., & Barch, D. (2011). Variable global dysconnectivity and individual differences in schizophrenia. Biological Psychiatry, 70(1), 43–50. doi: 10.1016/j.biopsych.2011.02.010.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Di, X., Kim, E. H., Huang, C. C., Tsai, S. J., Lin, C. P., & Biswal, B. B. (2013). The influence of the amplitude of low-frequency fluctuations on resting-state functional connectivity. Frontiers in Human Neuroscience, 7, 118. doi: 10.3389/fnhum.2013.00118.PubMedPubMedCentralGoogle Scholar
  13. Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62(4), 2296–2314. doi: 10.1016/j.neuroimage.2011.12.090.CrossRefPubMedGoogle Scholar
  14. Gottlich, M., Kramer, U. M., Kordon, A., Hohagen, F., & Zurowski, B. (2015). Resting-state connectivity of the amygdala predicts response to cognitive behavioral therapy in obsessive compulsive disorder. Biological Psychology, 111, 100–109. doi: 10.1016/j.biopsycho.2015.09.004.CrossRefPubMedGoogle Scholar
  15. Guo, W. B., Liu, F., Xue, Z. M., Xu, X. J., Wu, R. R., Ma, C. Q., et al. (2012). Alterations of the amplitude of low-frequency fluctuations in treatment-resistant and treatment-response depression: a resting-state fMRI study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 37(1), 153–160. doi: 10.1016/j.pnpbp.2012.01.011.CrossRefGoogle Scholar
  16. Hastie, T., Debashis, P., & Friedman, J. K. (2009). The elements of statistical learning. Data mining, inference and prediction (2nd ed.). New York: Springer.Google Scholar
  17. Hoptman, M. J., Zuo, X. N., Butler, P. D., Javitt, D. C., D’Angelo, D., Mauro, C. J., et al. (2010). Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophrenia Research, 117(1), 13–20. doi: 10.1016/j.schres.2009.09.030.CrossRefPubMedGoogle Scholar
  18. Hou, J., Wu, W., Lin, Y., Wang, J., Zhou, D., Guo, J., et al. (2012). Localization of cerebral functional deficits in patients with obsessive-compulsive disorder: a resting-state fMRI study. Journal of Affective Disorders, 138(3), 313–321. doi: 10.1016/j.jad.2012.01.022.CrossRefPubMedGoogle Scholar
  19. Hou, J. M., Zhao, M., Zhang, W., Song, L. H., Wu, W. J., Wang, J., et al. (2014). Resting-state functional connectivity abnormalities in patients with obsessive-compulsive disorder and their healthy first-degree relatives. Journal of Psychiatry & Neuroscience, 39(5), 304–311.CrossRefGoogle Scholar
  20. Jo, H. J., Gotts, S. J., Reynolds, R. C., Bandettini, P. A., Martin, A., Cox, R. W., et al. (2013). Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. Journal of Applied Mathematics. doi: 10.1155/2013/935154.PubMedPubMedCentralGoogle Scholar
  21. Kaufmann, T., Skatun, K. C., Alnaes, D., Doan, N. T., Duff, E. P., Tonnesen, S., et al. (2015). Disintegration of sensorimotor brain networks in Schizophrenia. Schizophrenia Bulletin, 41(6), 1326–1335. doi: 10.1093/schbul/sbv060.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276.CrossRefPubMedGoogle Scholar
  23. Liddle, P. F. (1987). The symptoms of chronic schizophrenia. a re-examination of the positive–negative dichotomy. British Journal of Psychiatry, 151, 145–151.CrossRefPubMedGoogle Scholar
  24. Modinos, G., Costafreda, S. G., van Tol, M. J., McGuire, P. K., Aleman, A., & Allen, P. (2013). Neuroanatomy of auditory verbal hallucinations in schizophrenia: a quantitative meta-analysis of voxel-based morphometry studies. Cortex, 49(4), 1046–1055. doi: 10.1016/j.cortex.2012.01.009.CrossRefPubMedGoogle Scholar
  25. Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: where are we now? Neuroscience & Biobehavioral Reviews, 35(5), 1110–1124. doi: 10.1016/j.neubiorev.2010.11.004.CrossRefGoogle Scholar
  26. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. doi: 10.1016/j.neuroimage.2011.10.018.CrossRefPubMedGoogle Scholar
  27. R_Development_Core_Team. (2011). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  28. Raichle, M. E. (2011). The restless brain. Brain Connectivity, 1(1), 3–12. doi: 10.1089/brain.2011.0019.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Rubinov, M., & Bullmore, E. (2013). Schizophrenia and abnormal brain network hubs. Dialogues in Clinical Neuroscience, 15(3), 339–349.PubMedPubMedCentralGoogle Scholar
  30. Salvador, R., Suckling, J., Schwarzbauer, C., & Bullmore, E. (2005). Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 937–946. doi: 10.1098/rstb.2005.1645.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Salvador, R., Vega, D., Pascual, J. C., Marco, J., Canales-Rodriguez, E. J., Aguilar, S., et al. (2014). Converging medial frontal resting state and diffusion-based abnormalities in borderline personality disorder. Biological Psychiatry. doi: 10.1016/j.biopsych.2014.08.026.Google Scholar
  32. Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., et al. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. NeuroImage, 60(1), 623–632. doi: 10.1016/j.neuroimage.2011.12.063.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E., et al. (2013). An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage, 64, 240–256. doi: 10.1016/j.neuroimage.2012.08.052.CrossRefPubMedGoogle Scholar
  34. Sepulcre, J., Liu, H., Talukdar, T., Martincorena, I., Yeo, B. T., & Buckner, R. L. (2010). The organization of local and distant functional connectivity in the human brain. PLoS Computational Biology, 6(6), e1000808. doi: 10.1371/journal.pcbi.1000808.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shen, Y., Yao, J., Jiang, X., Zhang, L., Xu, L., Feng, R., et al. (2015). Sub-hubs of baseline functional brain networks are related to early improvement following two-week pharmacological therapy for major depressive disorder. Human Brain Mapping, 36(8), 2915–2927. doi: 10.1002/hbm.22817.CrossRefPubMedGoogle Scholar
  36. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–219. doi: 10.1016/j.neuroimage.2004.07.051.CrossRefPubMedGoogle Scholar
  37. Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35(3), 509–527. doi: 10.1093/schbul/sbn176.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Steriade, M., & Llinas, R. R. (1988). The functional states of the thalamus and the associated neuronal interplay. Physiological Reviews, 68(3), 649–742.PubMedGoogle Scholar
  39. Turner, J. A., Damaraju, E., van Erp, T. G., Mathalon, D. H., Ford, J. M., Voyvodic, J., et al. (2013). A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Frontiers in Neuroscience, 7, 137. doi: 10.3389/fnins.2013.00137.PubMedPubMedCentralGoogle Scholar
  40. Wechsler, D. (1997). Wechsler memory scale (3rd ed.). San Antonio: The Psychological Corporation.Google Scholar
  41. Wilson, B. A. N., & Burgess, P. (1996). Behavioural assessment of the Dysexecutive Syndrome(BADS). London: Harcourt Assessment.Google Scholar
  42. Woodward, N. D., Karbasforoushan, H., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. The American Journal of Psychiatry, 169(10), 1092–1099. doi: 10.1176/appi.ajp.2012.12010056.CrossRefPubMedGoogle Scholar
  43. Xu, Y., Zhuo, C., Qin, W., Zhu, J., & Yu, C. (2015). Altered spontaneous brain activity in schizophrenia: a meta-analysis and a large-sample study. Biomedical Research International, 2015, 204628. doi: 10.1155/2015/204628.Google Scholar
  44. Yu, R., Chien, Y. L., Wang, H. L., Liu, C. M., Liu, C. C., Hwang, T. J., et al. (2014). Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia. Human Brain Mapping, 35(2), 627–637. doi: 10.1002/hbm.22203.CrossRefPubMedGoogle Scholar
  45. Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev, 29(2), 83–91. doi: 10.1016/j.braindev.2006.07.002.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Raymond Salvador
    • 1
    • 2
  • Ramón Landin-Romero
    • 1
    • 3
  • Maria Anguera
    • 1
    • 2
  • Erick J. Canales-Rodríguez
    • 1
    • 2
  • Joaquim Radua
    • 1
    • 2
    • 4
  • Amalia Guerrero-Pedraza
    • 5
  • Salvador Sarró
    • 1
    • 2
  • Teresa Maristany
    • 6
  • Peter J. McKenna
    • 1
    • 2
  • Edith Pomarol-Clotet
    • 1
    • 2
  1. 1.FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
  2. 2.Centro de Investigación Biomedica en Red de Salud Mental (CIBERSAM)MadridSpain
  3. 3.ARC Centre of Excellence in Cognition and its DisordersNeuroscience Research AustraliaSydneyAustralia
  4. 4.Institute of PsychiatryKing’s College LondonLondonUK
  5. 5.Hospital Benito Menni – CASMSant Boi de LlobregatSpain
  6. 6.Hospital Sant Joan de DéuPasseig de Sant Joan de DéuEsplugues de LlobregatSpain

Personalised recommendations