Brain Imaging and Behavior

, Volume 11, Issue 2, pp 541–551 | Cite as

Brain structure in autism: a voxel-based morphometry analysis of the Autism Brain Imaging Database Exchange (ABIDE)

  • Kaitlin Riddle
  • Carissa J. Cascio
  • Neil D. Woodward
Original Research


Increased brain volume is a consistent finding in young children with autism spectrum disorders (ASD); however, the regional specificity and developmental course of abnormal brain structure are less clear. Small sample sizes, particularly among voxel-based morphometry (VBM) investigations, likely contribute to this difficulty. Recently established large-scale neuroimaging data repositories have helped clarify the neuroanatomy of neuropsychiatric disorders such as schizophrenia and may prove useful in ASD. Structural brain images from the Autism Brain Imaging Database Exchange (ABIDE), which contains over 1100 participants, were analyzing using DARTEL VBM to investigate total brain and tissue volumes, and regional brain structure abnormalities in ASD. Two, overlapping cohorts were analyzed; an ‘All Subjects’ cohort (n = 833) that included all individuals with usable MRI data, and a ‘Matched Samples’ cohort (n = 600) comprised of ASD and TD individuals matched, within each site, on age and sex. Total brain and grey matter volumes were enlarged by approximately 1–2 % in ASD; however, the effect reached statistical significance in only the All Subjects cohort. Within the All Subjects cohort, VBM analysis revealed enlargement of the left anterior superior temporal gyrus in ASD. No significant regional changes were detected in the Matched Samples cohort. There was a non-significant reduction in the correlation between IQ and TBV in ASD compared to TD. Brain structure abnormalities in ASD individuals age 6 and older consists of a subtle increase in total brain volume due to enlargement of grey matter with little evidence of regionally specific effects.


Autism Neuroimaging Voxel-based morphometry TBV 


Compliance with ethical standards


No commercial support was received for the preparation of this manuscript and the authors have no conflicts of interest to report.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the original data sources on which this study is based.


This research was supported by funding from NIMH R21MH101321 (C.J.C. & N.D.W.) and the Jack Martin, MD., Research Professorship in Psychopharmacology (held by N.D.W.).

Supplementary material

11682_2016_9534_MOESM1_ESM.docx (2.2 mb)
ESM 1 Example raw T1 scan quality and segmentation results for three subjects (S1, S2, S3) included in the ABIDE. Raw T1 scans for S1 and S2 were considered usable; however, segmentation failed for S2 (note the extensive misclassification of grey matter as CSF in medial and lateral frontal cortex indicated with white arrows on axial slice). The raw T1 scan for S3 is an example of a scan considered unusable. (DOCX 2276 kb)
11682_2016_9534_MOESM2_ESM.docx (121 kb)
ESM 2 Mean and standard deviation of total brain and tissue volumes by site in autism spectrum disorder (ASD) and typical development (TD) for the All Subjects cohort (n = 833). Abbreviations: TBV = Total Brain Volume; CSF = Cerebrospinal Fluid. * Significant difference between groups (p ≤ .05) based on independent groups t-test. (DOCX 120 kb)
11682_2016_9534_MOESM3_ESM.docx (125 kb)
ESM 3 Mean and standard deviation of total brain and tissue volumes by site in autism spectrum disorder (ASD) and typical development (TD) for the Matched Samples cohort (n = 600). Abbreviations: TBV = Total Brain Volume; CSF = Cerebrospinal Fluid. * Significant difference between groups (p ≤ .05) based on independent groups t-test. (DOCX 124 kb)
11682_2016_9534_MOESM4_ESM.docx (707 kb)
ESM 4 Grey matter volume increase in ASD compared to TD with and without covarying for IQ. The same region in the left anterior superior temporal gyrus exhibited relatively greater grey matter volume in ASD regardless of whether or not IQ was included as a covariate in the analysis. (DOCX 706 kb)
11682_2016_9534_MOESM5_ESM.docx (174 kb)
ESM 5 Bivariate correlations between total brain volume (TBV) and IQ in autism spectrum disorder (ASD) and typical development (TD) for the All Subjects and Matched Samples Cohorts. Within the All Subjects cohort, the correlation between TBV and IQ in ASD r = .16 (p = .002) for the ASD group (n = 381) and r = .23 (p < .001) in the TD group (n = 430). Within the Matched Samples cohort, the correlation between TBV and IQ in ASD (n = 297) was r = .20 (p = .001) and r = .25 (p = <.001) in the TD group (n = 293). Results differ slightly from the partial correlations reported in text which covaried for age, sex, and site (bivariate correlations are reported and displayed here for clarity). (DOCX 173 kb)
11682_2016_9534_MOESM6_ESM.docx (21 kb)
ESM 6 Demographic for each age band within the All Subjects Matched Samples cohorts (DOCX 20 kb)


  1. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38, 95–113.CrossRefPubMedGoogle Scholar
  2. Aylward, E. H., Minshew, N. J., Field, K., Sparks, B. F., & Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology, 59, 175–183.CrossRefPubMedGoogle Scholar
  3. Bigler, E. D., Mortensen, S., Neeley, E. S., Ozonoff, S., Krasny, L., Johnson, M., Lu, J., Provencal, S. L., McMahon, W., & Lainhart, J. E. (2007). Superior temporal gyrus, language function, and autism. Developmental Neuropsychology, 31, 217–238.CrossRefPubMedGoogle Scholar
  4. Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., Beckmann, C. F., Adelstein, J. S., Buckner, R. L., Colcombe, S., Dogonowski, A. M., Ernst, M., Fair, D., Hampson, M., Hoptman, M. J., Hyde, J. S., Kiviniemi, V. J., Kotter, R., Li, S. J., Lin, C. P., Lowe, M. J., Mackay, C., Madden, D. J., Madsen, K. H., Margulies, D. S., Mayberg, H. S., McMahon, K., Monk, C. S., Mostofsky, S. H., Nagel, B. J., Pekar, J. J., Peltier, S. J., Petersen, S. E., Riedl, V., Rombouts, S. A., Rypma, B., Schlaggar, B. L., Schmidt, S., Seidler, R. D., Siegle, G. J., Sorg, C., Teng, G. J., Veijola, J., Villringer, A., Walter, M., Wang, L., Weng, X. C., Whitfield-Gabrieli, S., Williamson, P., Windischberger, C., Zang, Y. F., Zhang, H. Y., Castellanos, F. X., & Milham, M. P. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107, 4734–4739.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Brieber, S., Neufang, S., Bruning, N., Kamp-Becker, I., Remschmidt, H., Herpertz-Dahlmann, B., Fink, G. R., & Konrad, K. (2007). Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. Journal of Child Psychology and Psychiatry, 48, 1251–1258.CrossRefPubMedGoogle Scholar
  6. Campbell, M., Rosenbloom, S., Perry, R., George, A. E., Kricheff, I. I., Anderson, L., Small, A. M., & Jennings, S. J. (1982). Computerized axial tomography in young autistic children. The American Journal of Psychiatry, 139, 510–512.CrossRefPubMedGoogle Scholar
  7. Courchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., Harwood, M., Hinds, S., & Press, G. A. (2000). Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216, 672–682.CrossRefPubMedGoogle Scholar
  8. Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D., Chisum, H. J., Moses, P., Pierce, K., Lord, C., Lincoln, A. J., Pizzo, S., Schreibman, L., Haas, R. H., Akshoomoff, N. A., & Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology, 57, 245–254.CrossRefPubMedGoogle Scholar
  9. Courchesne, E., Carper, R., & Akshoomoff, N. (2003). Evidence of brain overgrowth in the first year of life in autism. JAMA, 290, 337–344.CrossRefPubMedGoogle Scholar
  10. Courchesne, E., Pierce, K., Schumann, C. M., Redcay, E., Buckwalter, J. A., Kennedy, D. P., & Morgan, J. (2007). Mapping early brain development in autism. Neuron, 56, 399–413.CrossRefPubMedGoogle Scholar
  11. DeRamus, T. P., & Kana, R. K. (2015). Anatomical likelihood estimation meta-analysis of grey and white matter anomalies in autism spectrum disorders. Neuroimage Clinical, 7, 525–536.CrossRefPubMedGoogle Scholar
  12. DeWitt, I., & Rauschecker, J. P. (2012). Phoneme and word recognition in the auditory ventral stream. Proceedings of the National Academy of Sciences of the United States of America, 109, E505–E514.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., Ertl-Wagner, B., Fair, D. A., Gallagher, L., Kennedy, D. P., Keown, C. L., Keysers, C., Lainhart, J. E., Lord, C., Luna, B., Menon, V., Minshew, N. J., Monk, C. S., Mueller, S., Muller, R. A., Nebel, M. B., Nigg, J. T., O’Hearn, K., Pelphrey, K. A., Peltier, S. J., Rudie, J. D., Sunaert, S., Thioux, M., Tyszka, J. M., Uddin, L. Q., Verhoeven, J. S., Wenderoth, N., Wiggins, J. L., Mostofsky, S. H., & Milham, M. P. (2014). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19, 659–667.Google Scholar
  14. Duerden, E. G., Mak-Fan, K. M., Taylor, M. J., & Roberts, S. W. (2012). Regional differences in grey and white matter in children and adults with autism spectrum disorders: an activation likelihood estimate (ALE) meta-analysis. Autism Research, 5, 49–66.CrossRefPubMedGoogle Scholar
  15. Durston, S., Hulshoff Pol, H. E., Casey, B. J., Giedd, J. N., Buitelaar, J. K., & van Engeland, H. (2001). Anatomical MRI of the developing human brain: what have we learned? Journal of the American Academy of Child and Adolescent Psychiatry, 40, 1012–1020.CrossRefPubMedGoogle Scholar
  16. Ecker, C., Suckling, J., Deoni, S. C., Lombardo, M. V., Bullmore, E. T., Baron-Cohen, S., Catani, M., Jezzard, P., Barnes, A., Bailey, A. J., Williams, S. C., & Murphy, D. G. (2012). Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: a multicenter magnetic resonance imaging study. Archives of General Psychiatry, 69, 195–209.CrossRefPubMedGoogle Scholar
  17. Falk, E. B., Hyde, L. W., Mitchell, C., Faul, J., Gonzalez, R., Heitzeg, M. M., Keating, D. P., Langa, K. M., Martz, M. E., Maslowsky, J., Morrison, F. J., Noll, D. C., Patrick, M. E., Pfeffer, F. T., Reuter-Lorenz, P. A., Thomason, M. E., Davis-Kean, P., Monk, C. S., & Schulenberg, J. (2013). What is a representative brain? Neuroscience meets population science. Proceedings of the National Academy of Sciences of the United States of America, 110, 17615–17622.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Freitag, C. M., Luders, E., Hulst, H. E., Narr, K. L., Thompson, P. M., Toga, A. W., Krick, C., & Konrad, C. (2009). Total brain volume and corpus callosum size in medication-naive adolescents and young adults with autism spectrum disorder. Biological Psychiatry, 66, 316–319.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fusar-Poli, P., Radua, J., Frascarelli, M., Mechelli, A., Borgwardt, S., Di, F. F., Biondi, M., Ioannidis, J. P., & David, S. P. (2014). Evidence of reporting biases in voxel-based morphometry (VBM) studies of psychiatric and neurological disorders. Human Brain Mapping, 35, 3052–3065.CrossRefPubMedGoogle Scholar
  20. Giedd, J. N., Blumenthal, J., Jeffries, N. O., Castellanos, F. X., Liu, H., Zijdenbos, A., Paus, T., Evans, A. C., & Rapoport, J. L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2, 861–863.CrossRefPubMedGoogle Scholar
  21. Greimel, E., Nehrkorn, B., Schulte-Ruther, M., Fink, G. R., Nickl-Jockschat, T., Herpertz-Dahlmann, B., Konrad, K., & Eickhoff, S. B. (2013). Changes in grey matter development in autism spectrum disorder. Brain Structure and Function, 218, 929–942.CrossRefPubMedGoogle Scholar
  22. Gupta, C. N., Calhoun, V. D., Rachakonda, S., Chen, J., Patel, V., Liu, J., Segall, J., Franke, B., Zwiers, M. P., Arias-Vasquez, A., Buitelaar, J., Fisher, S. E., Fernandez, G., van Erp, T. G., Potkin, S., Ford, J., Mathalon, D., McEwen, S., Lee, H. J., Mueller, B. A., Greve, D. N., Andreassen, O., Agartz, I., Gollub, R. L., Sponheim, S. R., Ehrlich, S., Wang, L., Pearlson, G., Glahn, D. C., Sprooten, E., Mayer, A. R., Stephen, J., Jung, R. E., Canive, J., Bustillo, J., & Turner, J. A. (2015). Patterns of gray matter abnormalities in schizophrenia based on an international mega-analysis. Schizophrenia Bulletin, 41, 1133–1142.CrossRefPubMedGoogle Scholar
  23. Haar, S., Berman, S., Behrmann, M., & Dinstein, I. (2014) Anatomical Abnormalities in Autism? Cerebral Cortex Google Scholar
  24. Hallahan, B., Daly, E. M., McAlonan, G., Loth, E., Toal, F., O’Brien, F., Robertson, D., Hales, S., Murphy, C., Murphy, K. C., & Murphy, D. G. (2009). Brain morphometry volume in autistic spectrum disorder: a magnetic resonance imaging study of adults. Psychological Medicine, 39, 337–346.CrossRefPubMedGoogle Scholar
  25. Hardan, A. Y., Muddasani, S., Vemulapalli, M., Keshavan, M. S., & Minshew, N. J. (2006). An MRI study of increased cortical thickness in autism. The American Journal of Psychiatry, 163, 1290–1292.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hazlett, H. C., Poe, M., Gerig, G., Smith, R. G., Provenzale, J., Ross, A., Gilmore, J., & Piven, J. (2005). Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Archives of General Psychiatry, 62, 1366–1376.CrossRefPubMedGoogle Scholar
  27. Hazlett, H. C., Poe, M. D., Gerig, G., Smith, R. G., & Piven, J. (2006). Cortical gray and white brain tissue volume in adolescents and adults with autism. Biological Psychiatry, 59, 1–6.CrossRefPubMedGoogle Scholar
  28. Hedman, A. M., van Haren, N. E., Schnack, H. G., Kahn, R. S., & Hulshoff Pol, H. E. (2012). Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Human Brain Mapping, 33, 1987–2002.CrossRefPubMedGoogle Scholar
  29. Herbert, M. R., Ziegler, D. A., Deutsch, C. K., O’Brien, L. M., Lange, N., Bakardjiev, A., Hodgson, J., Adrien, K. T., Steele, S., Makris, N., Kennedy, D., Harris, G. J., & Caviness, V. S., Jr. (2003). Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain, 126, 1182–1192.CrossRefPubMedGoogle Scholar
  30. Ioannidis, J. P., Munafo, M. R., Fusar-Poli, P., Nosek, B. A., & David, S. P. (2014). Publication and other reporting biases in cognitive sciences: detection, prevalence, and prevention. Trends in Cognitive Sciences, 18, 235–241.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jou, R. J., Mateljevic, N., Minshew, N. J., Keshavan, M. S., & Hardan, A. Y. (2011). Reduced central white matter volume in autism: implications for long-range connectivity. Psychiatry and Clinical Neurosciences, 65, 98–101.CrossRefPubMedGoogle Scholar
  32. Kamdar, M. R., Gomez, R. A., & Ascherman, J. A. (2009). Intracranial volumes in a large series of healthy children. Plastic and Reconstructive Surgery, 124, 2072–2075.CrossRefPubMedGoogle Scholar
  33. Lau, E. F., Gramfort, A., Hamalainen, M. S., & Kuperberg, G. R. (2013). Automatic semantic facilitation in anterior temporal cortex revealed through multimodal neuroimaging. The Journal of Neuroscience, 33, 17174–17181.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., Blumenthal, J. D., Lerch, J., Zijdenbos, A. P., Evans, A. C., Thompson, P. M., & Giedd, J. N. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36, 1065–1073.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lord, C., Rutter, M., & Le, C. A. (1994). Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.CrossRefPubMedGoogle Scholar
  36. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr., Leventhal, B. L., DiLavore, P. C., Pickles, A., & Rutter, M. (2000). The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223.CrossRefPubMedGoogle Scholar
  37. McAlonan, G. M., Cheung, V., Cheung, C., Suckling, J., Lam, G. Y., Tai, K. S., Yip, L., Murphy, D. G., & Chua, S. E. (2005). Mapping the brain in autism. A voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain, 128, 268–276.CrossRefPubMedGoogle Scholar
  38. Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C., Jagust, W., Trojanowski, J. Q., Toga, A. W., & Beckett, L. (2005). The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics of North America, 15, 869–xii.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mueller, S., Keeser, D., Samson, A. C., Kirsch, V., Blautzik, J., Grothe, M., Erat, O., Hegenloh, M., Coates, U., Reiser, M. F., Hennig-Fast, K., & Meindl, T. (2013). Convergent findings of altered functional and structural brain connectivity in individuals with high functioning Autism: a multimodal MRI study. PloS One, 8, e67329.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Muller, R. A. (2007). The study of autism as a distributed disorder. Mental Retardation and Developmental Disabilities Research Reviews, 13, 85–95.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Muller, R. A., Pierce, K., Ambrose, J. B., Allen, G., & Courchesne, E. (2001). Atypical patterns of cerebral motor activation in autism: a functional magnetic resonance study. Biological Psychiatry, 49, 665–676.CrossRefPubMedGoogle Scholar
  42. Nickl-Jockschat, T., Habel, U., Michel, T. M., Manning, J., Laird, A. R., Fox, P. T., Schneider, F., & Eickhoff, S. B. (2012). Brain structure anomalies in autism spectrum disorder--a meta-analysis of VBM studies using anatomic likelihood estimation. Human Brain Mapping, 33, 1470–1489.CrossRefPubMedGoogle Scholar
  43. Palmen, S. J., Hulshoff Pol, H. E., Kemner, C., Schnack, H. G., Durston, S., Lahuis, B. E., Kahn, R. S., & Van, E. H. (2005). Increased gray-matter volume in medication-naive high-functioning children with autism spectrum disorder. Psychological Medicine, 35, 561–570.CrossRefPubMedGoogle Scholar
  44. Pierce, K. (2011). Early functional brain development in autism and the promise of sleep fMRI. Brain Research, 1380, 162–174.CrossRefPubMedGoogle Scholar
  45. Piven, J., Arndt, S., Bailey, J., Havercamp, S., Andreasen, N. C., & Palmer, P. (1995). An MRI study of brain size in autism. The American Journal of Psychiatry, 152, 1145–1149.CrossRefPubMedGoogle Scholar
  46. Radeloff, D., Ciaramidaro, A., Siniatchkin, M., Hainz, D., Schlitt, S., Weber, B., Poustka, F., Bolte, S., Walter, H., & Freitag, C. M. (2014). Structural alterations of the social brain: a comparison between schizophrenia and autism. PloS One, 9, e106539.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Redcay, E., & Courchesne, E. (2005). When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biological Psychiatry, 58, 1–9.CrossRefPubMedGoogle Scholar
  48. Riedel, A., Maier, S., Ulbrich, M., Biscaldi, M., Ebert, D., Fangmeier, T., Perlov, E., & van Tebartz, E. L. (2014). No significant brain volume decreases or increases in adults with high-functioning autism spectrum disorder and above average intelligence: a voxel-based morphometric study. Psychiatry Research, 223, 67–74.CrossRefPubMedGoogle Scholar
  49. Sparks, B. F., Friedman, S. D., Shaw, D. W., Aylward, E. H., Echelard, D., Artru, A. A., Maravilla, K. R., Giedd, J. N., Munson, J., Dawson, G., & Dager, S. R. (2002). Brain structural abnormalities in young children with autism spectrum disorder. Neurology, 59, 184–192.CrossRefPubMedGoogle Scholar
  50. Stanfield, A. C., McIntosh, A. M., Spencer, M. D., Philip, R., Gaur, S., & Lawrie, S. M. (2008). Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. European Psychiatry, 23, 289–299.CrossRefPubMedGoogle Scholar
  51. Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., Toro, R., Appel, K., Bartecek, R., Bergmann, O., Bernard, M., Brown, A. A., Cannon, D. M., Chakravarty, M. M., Christoforou, A., Domin, M., Grimm, O., Hollinshead, M., Holmes, A. J., Homuth, G., Hottenga, J. J., Langan, C., Lopez, L. M., Hansell, N. K., Hwang, K. S., Kim, S., Laje, G., Lee, P. H., Liu, X., Loth, E., Lourdusamy, A., Mattingsdal, M., Mohnke, S., Maniega, S. M., Nho, K., Nugent, A. C., O’Brien, C., Papmeyer, M., Putz, B., Ramasamy, A., Rasmussen, J., Rijpkema, M., Risacher, S. L., Roddey, J. C., Rose, E. J., Ryten, M., Shen, L., Sprooten, E., Strengman, E., Teumer, A., Trabzuni, D., Turner, J., van Eijk, K., van Erp, T. G., van Tol, M. J., Wittfeld, K., Wolf, C., Woudstra, S., Aleman, A., Alhusaini, S., Almasy, L., Binder, E. B., Brohawn, D. G., Cantor, R. M., Carless, M. A., Corvin, A., Czisch, M., Curran, J. E., Davies, G., de Almeida, M. A., Delanty, N., Depondt, C., Duggirala, R., Dyer, T. D., Erk, S., Fagerness, J., Fox, P. T., Freimer, N. B., Gill, M., Goring, H. H., Hagler, D. J., Hoehn, D., Holsboer, F., Hoogman, M., Hosten, N., Jahanshad, N., Johnson, M. P., Kasperaviciute, D., Kent, J. W., Jr., Kochunov, P., Lancaster, J. L., Lawrie, S. M., Liewald, D. C., Mandl, R., Matarin, M., Mattheisen, M., Meisenzahl, E., Melle, I., Moses, E. K., Muhleisen, T. W., Nauck, M., Nothen, M. M., Olvera, R. L., Pandolfo, M., Pike, G. B., Puls, R., Reinvang, I., Renteria, M. E., Rietschel, M., Roffman, J. L., Royle, N. A., Rujescu, D., Savitz, J., Schnack, H. G., Schnell, K., Seiferth, N., Smith, C., Steen, V. M., Valdes Hernandez, M. C., Van den Heuvel, M., van der Wee, N. J., van Haren, N. E., Veltman, J. A., Volzke, H., Walker, R., Westlye, L. T., Whelan, C. D., Agartz, I., Boomsma, D. I., Cavalleri, G. L., Dale, A. M., Djurovic, S., Drevets, W. C., Hagoort, P., Hall, J., Heinz, A., Jack, C. R., Jr., Foroud, T. M., Le, H. S., Macciardi, F., Montgomery, G. W., Poline, J. B., Porteous, D. J., Sisodiya, S. M., Starr, J. M., Sussmann, J., Toga, A. W., Veltman, D. J., Walter, H., Weiner, M. W., Bis, J. C., Ikram, M. A., Smith, A. V., Gudnason, V., Tzourio, C., Vernooij, M. W., Launer, L. J., DeCarli, C., Seshadri, S., Andreassen, O. A., Apostolova, L. G., Bastin, M. E., Blangero, J., Brunner, H. G., Buckner, R. L., Cichon, S., Coppola, G., de Zubicaray, G. I., Deary, I. J., Donohoe, G., de Geus, E. J., Espeseth, T., Fernandez, G., Glahn, D. C., Grabe, H. J., Hardy, J., Hulshoff Pol, H. E., Jenkinson, M., Kahn, R. S., McDonald, C., McIntosh, A. M., McMahon, F. J., McMahon, K. L., Meyer-Lindenberg, A., Morris, D. W., Muller-Myhsok, B., Nichols, T. E., Ophoff, R. A., Paus, T., Pausova, Z., Penninx, B. W., Potkin, S. G., Samann, P. G., Saykin, A. J., Schumann, G., Smoller, J. W., Wardlaw, J. M., Weale, M. E., Martin, N. G., Franke, B., Wright, M. J., & Thompson, P. M. (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 44, 552–561.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Takao, H., Hayashi, N., & Ohtomo, K. (2014). Effects of study design in multi-scanner voxel-based morphometry studies. NeuroImage, 84, 133–140.CrossRefPubMedGoogle Scholar
  53. van Erp, T.G., Hibar, D.P., Rasmussen, J.M., Glahn, D.C., Pearlson, G.D., Andreassen, O.A., Agartz, I., Westlye, L.T., Haukvik, U.K., Dale, A.M., Melle, I., Hartberg, C.B., Gruber, O., Kraemer, B., Zilles, D., Donohoe, G., Kelly, S., McDonald, C., Morris, D.W., Cannon, D.M., Corvin, A., Machielsen, M.W., Koenders, L., de Haan, L., Veltman, D.J., Satterthwaite, T.D., Wolf, D.H., Gur, R.C., Gur, R.E., Potkin, S.G., Mathalon, D.H., Mueller, B.A., Preda, A., Macciardi, F., Ehrlich, S., Walton, E., Hass, J., Calhoun, V.D., Bockholt, H.J., Sponheim, S.R., Shoemaker, J.M., van Haren, N.E., Pol, H.E., Ophoff, R.A., Kahn, R.S., Roiz-Santianez, R., Crespo-Facorro, B., Wang, L., Alpert, K.I., Jonsson, E.G., Dimitrova, R., Bois, C., Whalley, H.C., McIntosh, A.M., Lawrie, S.M., Hashimoto, R., Thompson, P.M., & Turner, J.A. (2015). Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecule Psychiatry.Google Scholar
  54. Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., & Ugurbil, K. (2013). The WU-Minn human connectome project: an overview. NeuroImage, 80, 62–79.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Waiter, G. D., Williams, J. H., Murray, A. D., Gilchrist, A., Perrett, D. I., & Whiten, A. (2004). A voxel-based investigation of brain structure in male adolescents with autistic spectrum disorder. NeuroImage, 22, 619–625.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kaitlin Riddle
    • 1
  • Carissa J. Cascio
    • 1
  • Neil D. Woodward
    • 1
    • 2
  1. 1.Department of PsychiatryVanderbilt University School of MedicineNashvilleUSA
  2. 2.Center for Cognitive Medicine & Psychotic Disorders ProgramVanderbilt Psychiatric HospitalNashvilleUSA

Personalised recommendations