Advertisement

Brain Imaging and Behavior

, Volume 11, Issue 2, pp 526–540 | Cite as

Abnormal rich club organization and impaired correlation between structural and functional connectivity in migraine sufferers

  • Kang Li
  • Lijun Liu
  • Qin Yin
  • Wanghuan Dun
  • Xiaolin Xu
  • Jixin Liu
  • Ming Zhang
Original Research

Abstract

Because of the unique position of the topologically central role of densely interconnected brain hubs, our study aimed to investigate whether these regions and their related connections would be particularly vulnerable to migraine. In our study, we explored the rich club structure and its role in global functional dynamics in 30 patients with migraine without aura and 30 healthy controls. DTI and resting fMRI were used to construct structural connectivity (SC) and functional connectivity (FC) networks. An independent replication data set of 26 patients and 26 controls was included to replicate and validate significant findings. As compared with the controls, the structural networks of patients exhibited altered rich club organization with higher level of feeder connection density, abnormal small-world organization with increased global efficiency and decreased strength of SC-FC coupling. As these abnormal topological properties and headache attack duration exhibited a significant association with increased density of feeder connections, our results indicated that migraine may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher ‘bridgeness’ with non-rich club regions, which may increase the integration among pain-related brain circuits with more excitability but less inhibition for the modulation of migraine.

Keywords

Brain structural connectome Migraine Network efficiency Rich club organization 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 81471737, 81571640, and 81371530; and the Basic and Cutting-edge Research (plan) Project of Commission of Science and Technology, Chong Qing (cstc2014jcyjA10120); and the Medical Scientific Research (plan) Project of Health and Family Planning Commission of Chong Qing (2012-2-187) (20142089).

Compliance with ethical standards

Conflict of interest

Kang Li, Lijun Liu, Qin Yin, Wanghuan Dun, Xiaolin Xu, Jixin Liu, Ming Zhang declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Ethical statements

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2016_9533_Fig8_ESM.gif (2.5 mb)
ESM 1

(GIF 2554 kb)

11682_2016_9533_MOESM1_ESM.tif (734 kb)
High resolution image (TIF 734 kb)
11682_2016_9533_MOESM2_ESM.doc (44 kb)
ESM 2 (DOC 44 kb)
11682_2016_9533_MOESM3_ESM.doc (34 kb)
ESM 3 (DOC 33 kb)

References

  1. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72.CrossRefPubMedGoogle Scholar
  3. Alexander-Bloch, A. F., Vértes, P. E., Stidd, R., Lalonde, F., Clasen, L., Rapoport, J., et al. (2012). The anatomical distance of functional connections predicts brain network topology in health and schizophrenia. Cerebral Cortex, 23, 127–138.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Antal, A., & Paulus, W. (2011). A case of refractory orofacial pain treated by transcranial direct current stimulation applied over hand motor area in combination with NMDA agonist drug intake. Brain Stimulation, 4(2), 117–121.CrossRefPubMedGoogle Scholar
  5. Apkarian, A. V., Baliki, M. N., & Geha, P. Y. (2009). Towards a theory of chronic pain. Progress in Neurobiology, 87(2), 81–97.CrossRefPubMedGoogle Scholar
  6. Apkarian, A. V., Hashmi, J. A., & Baliki, M. N. (2011). Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain, 152(3), S49–S64.CrossRefPubMedGoogle Scholar
  7. Bai, F., Shu, N., Yuan, Y., Shi, Y., Yu, H., Wu, D., et al. (2012). Topologically convergent and divergent structural connectivity patterns between patients with remitted geriatric depression and amnestic mild cognitive impairment. Journal of Neuroscience, 32(12), 4307–4318.CrossRefPubMedGoogle Scholar
  8. Bashir, A., Lipton, R. B., Ashina, S., & Ashina, M. (2013). Migraine and structural changes in the brain A systematic review and meta-analysis. Neurology, 81(14), 1260–1268.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bingel, U., Schoell, E., Herken, W., Büchel, C., & May, A. (2007). Habituation to painful stimulation involves the antinociceptive system. Pain, 131(1), 21–30.CrossRefPubMedGoogle Scholar
  10. Borsook, D., Upadhyay, J., Chudler, E. H., & Becerra, L. (2010). A key role of the basal ganglia in pain and analgesia-insights gained through human functional imaging. Molecular Pain, 6(1), 27.PubMedPubMedCentralGoogle Scholar
  11. Borsook, D., Maleki, N., Becerra, L., & McEwen, B. (2012). Understanding migraine through the lens of maladaptive stress responses: a model disease of allostatic load. Neuron, 73(2), 219–234.CrossRefPubMedGoogle Scholar
  12. Brummitt, C. D., D’Souza, R. M., & Leicht, E. (2012). Suppressing cascades of load in interdependent networks. Proceedings of the National Academy of Sciences of the United States of America, 109(12), E680–E689.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bullmore, E., & Sporns, O. (2012). The economy of brain network organization. Nature Reviews Neuroscience, 13(5), 336–349.PubMedGoogle Scholar
  14. Bullmore, E. T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E., & Brammer, M. J. (1999). Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE T Medical Imaging, 18(1), 32–42.CrossRefGoogle Scholar
  15. Cavada, C., Tejedor, J., Cruz-Rizzolo, R. J., & Reinoso-Suárez, F. (2000). The anatomical connections of the macaque monkey orbitofrontal cortex. a review. Cerebral Cortex, 10(3), 220–242.CrossRefPubMedGoogle Scholar
  16. Colizza, V., Flammini, A., Serrano, M. A., & Vespignani, A. (2006). Detecting rich-club ordering in complex networks. Nature Physics, 2(2), 110–115.CrossRefGoogle Scholar
  17. Collin, G., Sporns, O., Mandl, R. C., & van den Heuvel, M. P. (2014). Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cerebral Cortex, 24(9), 2258–2267.CrossRefPubMedGoogle Scholar
  18. Crossley, N. A., Mechelli, A., Vértes, P. E., Winton-Brown, T. T., Patel, A. X., Ginestet, C. E., et al. (2013). Cognitive relevance of the community structure of the human brain functional coactivation network. Proceedings of the National Academy of Sciences of the United States of America, 110(28), 11583–11588.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P., et al. (2014). The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain, 137(8), 2382–2395.CrossRefPubMedPubMedCentralGoogle Scholar
  20. DaSilva, A. F., Mendonca, M. E., Zaghi, S., Lopes, M., DosSantos, M. F., Spierings, E. L., et al. (2012). tDCS‐induced analgesia and electrical fields in pain‐related neural networks in chronic migraine. Headache, 52(8), 1283–1295.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Draganski, B., Kherif, F., Klöppel, S., Cook, P. A., Alexander, D. C., Parker, G. J., et al. (2008). Evidence for segregated and integrative connectivity patterns in the human basal ganglia. Journal of Neuroscience, 28(28), 7143–7152.CrossRefPubMedGoogle Scholar
  22. Fair, D. A., Nigg, J. T., Iyer, S., Bathula, D., Mills, K. L., Dosenbach, N. U., et al. (2012). Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Frontiers in Systems Neuroscience, 6, 80.PubMedGoogle Scholar
  23. Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., et al. (2009a). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19(3), 524–536.CrossRefPubMedGoogle Scholar
  24. Gong, G., Rosa-Neto, P., Carbonell, F., Chen, Z. J., He, Y., & Evans, A. C. (2009b). Age-and gender-related differences in the cortical anatomical network. Journal of Neuroscience, 29(50), 15684–15693.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., et al. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Irfanoglu, M. O., Walker, L., Sarlls, J., Marenco, S., & Pierpaoli, C. (2012). Effects of image distortions originating from susceptibility variations and concomitant fields on diffusion MRI tractography results. NeuroImage, 61(1), 275–288.CrossRefPubMedGoogle Scholar
  27. Kong, J., & Charlestown, M. (2015). Neuromodulation of conditioned placebo/nocebo in heat pain: anodal vs. cathodal transcranial direct current stimulation to the right dorsolateral prefrontal cortex. doi: 10.1097/j.pain.0000000000000163.
  28. Leemans, A., & Jones, D. K. (2009). The B‐matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine, 61(6), 1336–1349.CrossRefPubMedGoogle Scholar
  29. Liu, J., Lan, L., Li, G., Yan, X., Nan, J., Xiong, S., et al. (2013a). Migraine-related gray matter and white matter changes at a 1-year follow-up evaluation. The Journal of Pain, 14(12), 1703–1708.CrossRefPubMedGoogle Scholar
  30. Liu, J., Zhao, L., Nan, J., Li, G., Xiong, S., von Deneen, K. M., et al. (2013b). The trade-off between wiring cost and network topology in white matter structural networks in health and migraine. Experimental Neurology, 248, 196–204.CrossRefPubMedGoogle Scholar
  31. Liu, J., Lan, L., Mu, J., Zhao, L., Yuan, K., Zhang, Y., et al. (2015a). Genetic contribution of catechol‐O‐methyltransferase in hippocampal structural and functional changes of female migraine sufferers. Human Brain Mapping, 36(5), 1782–1795.CrossRefPubMedGoogle Scholar
  32. Liu, J., Zhao, L., Lei, F., Zhang, Y., Yuan, K., Gong, Q., et al. (2015b). Disrupted resting‐state functional connectivity and its changing trend in migraine suffers. Human Brain Mapping, 36(5), 1892–1907.CrossRefPubMedGoogle Scholar
  33. Loher, T., Burgunder, J., Weber, S., Sommerhalder, R., & Krauss, J. (2002). Effect of chronic pallidal deep brain stimulation on off period dystonia and sensory symptoms in advanced Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 73(4), 395–399.CrossRefGoogle Scholar
  34. Maleki, N., Becerra, L., Nutile, L., Pendse, G., Brawn, J., Bigal, M., et al. (2011). Migraine attacks the basal ganglia. Molecular Pain, 7(71), 8069–8067.Google Scholar
  35. May, A. (2009). New insights into headache: an update on functional and structural imaging findings. Nature Reviews Neurology, 5(4), 199–209.CrossRefPubMedGoogle Scholar
  36. Mori, S., & van Zijl, P. (2002). Fiber tracking: principles and strategies—a technical review. NMR in Biomedicine, 15(7–8), 468–480.CrossRefPubMedGoogle Scholar
  37. Newman, M. E. (2006). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577–8582.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A., et al. (2008). Transcranial direct current stimulation: state of the art 2008. Brain Stimulation, 1(3), 206–223.CrossRefPubMedGoogle Scholar
  39. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.CrossRefPubMedGoogle Scholar
  40. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52(3), 1059–1069.CrossRefPubMedGoogle Scholar
  41. Rule, R. R., Shimamura, A. P., & Knight, R. T. (2002). Orbitofrontal cortex and dynamic filtering of emotional stimuli. Cognitive, Affective, & Behavioral Neuroscience, 2(3), 264–270.CrossRefGoogle Scholar
  42. Schwedt, T. J., Chiang, C.-C., Chong, C. D., & Dodick, D. W. (2015). Functional MRI of migraine. The Lancet Neurology, 14(1), 81–91.CrossRefPubMedGoogle Scholar
  43. Senden, M., Deco, G., de Reus, M. A., Goebel, R., & van den Heuvel, M. P. (2014). Rich club organization supports a diverse set of functional network configurations. NeuroImage, 96, 174–182.CrossRefPubMedGoogle Scholar
  44. Shu, N., Liu, Y., Li, K., Duan, Y., Wang, J., Yu, C., et al. (2011). Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cerebral Cortex, 21(11), 2565–2577.CrossRefPubMedGoogle Scholar
  45. Sporns, O., Tononi, G., & Kötter, R. (2005). The human connectome: a structural description of the human brain. PLoS Computational Biology, 1(4), e42.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Supekar, K., Uddin, L. Q., Prater, K., Amin, H., Greicius, M. D., & Menon, V. (2010). Development of functional and structural connectivity within the default mode network in young children. NeuroImage, 52(1), 290–301.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Tomasi, D., Wang, G. J., & Volkow, N. D. (2013). Energetic cost of brain functional connectivity. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13642–13647.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.CrossRefPubMedGoogle Scholar
  49. van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(44), 15775–15786.CrossRefPubMedGoogle Scholar
  50. van den Heuvel, M. P., & Sporns, O. (2013). An anatomical substrate for integration among functional networks in human cortex. Journal of Neuroscience, 33(36), 14489–14500.CrossRefPubMedGoogle Scholar
  51. van den Heuvel, M. P., Kahn, R. S., Goñi, J., & Sporns, O. (2012). High-cost, high-capacity backbone for global brain communication. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11372–11377.CrossRefPubMedPubMedCentralGoogle Scholar
  52. van den Heuvel, M. P., Sporns, O., Collin, G., Scheewe, T., Mandl, R. C., Cahn, W., et al. (2013). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 70(8), 783–792.CrossRefPubMedGoogle Scholar
  53. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.CrossRefPubMedGoogle Scholar
  54. Weiland, B. J., Boutros, N. N., Moran, J. M., Tepley, N., & Bowyer, S. M. (2008). Evidence for a frontal cortex role in both auditory and somatosensory habituation: a MEG study. NeuroImage, 42(2), 827–835.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS One, 8(7), e68910.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yuan, K., Zhao, L., Cheng, P., Yu, D., Zhao, L., Dong, T., et al. (2013). Altered structure and resting-state functional connectivity of the basal ganglia in migraine patients without aura. The Journal of Pain, 14(8), 836–844.CrossRefPubMedGoogle Scholar
  57. Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. NeuroImage, 53(4), 1197–1207.CrossRefPubMedGoogle Scholar
  58. Zhang, Z., Liao, W., Chen, H., Mantini, D., Ding, J.-R., Xu, Q., et al. (2011). Altered functional–structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain, 134(10), 2912–2928.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Medical ImagingFirst Affiliated Hospital of Xi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Radiology DepartmentChong Qing General HospitalChong QingPeople’s Republic of China
  3. 3.Department of RadiologyThe Second Hospital of YulinShaanxi ProvincePeople’s Republic of China
  4. 4.School of Life Science and TechnologyXidian UniversityXi’anPeople’s Republic of China

Personalised recommendations