Skip to main content

Advertisement

Log in

The relationship between microvasculature in white matter hyperintensities and cognitive function

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

White matter hyperintensities (WMHs) are associated with cognitive decline, but less is known about pathophysiology of cognitive decline in patients with WMHs. We investigated microvasculature and microstructure in WMHs using intravoxel incoherent motion (IVIM) and their associations with cognitive function. Thirty-two subjects with WMHs were enrolled in our study. Fast diffusion coefficient (D*), perfusion fraction (f) and slow diffusion coefficient (D) from IVIM model were compared between regions of WMHs (periventricular WMHs, PWMHs and deep WMHs, DWMHs) and surrounding normal white matter. Multivariate linear model was used to determine the independent factors associated with cognitive function assessed by the Mini Mental State Examination (MMSE) and the standardized coefficient (β) of factors was estimated. D* was significantly lower (4.95 × 10−3 mm2/s versus 8.36 × 10−3 mm2/s in PWMHs and 5.04 × 10−3 mm2/s versus 8.67 × 10−3 mm2/s in DWMHs, both P < 0.001), and f (14.64 % versus 12.01 % in PWMHs and 14.26 % versus 11.31 % in DWMHs, both P < 0.001) and D (1.02 × 10−3 mm2/s versus 0.73 × 10−3 mm2/s in PWMHs and 0.86 × 10−3 mm2/s versus 0.70 × 10−3 mm2/s in DWMHs, both P < 0.001) were significantly higher in WMHs. Only f in PWMHs was independently associated with MMSE (β = 0.443, P = 0.016). The decreased D* and increased D in WMHs were similar to previous findings. The increased f in PWMHs relating with better cognition provides the pathophysiological basis in understanding cognitive decline in patients with WMHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alosco, M. L., Brickman, A. M., Spitznagel, M. B., Garcia, S. L., Narkhede, A., Griffith, E. Y., et al. (2013). Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congestive Heart Failure, 19(4), E29–E34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Au, R., Massaro, J. M., Wolf, P. A., Young, M. E., Beiser, A., Seshadri, S., et al. (2006). Association of white matter hyperintensity volume with decreased cognitive functioning: the Framingham Heart Study. Archives of Neurology, 63(2), 246–250.

    Article  PubMed  Google Scholar 

  • Brickman, A. M., Zahra, A., Muraskin, J., Steffener, J., Holland, C. M., Habeck, C., et al. (2009). Reduction in cerebral blood flow in areas appearing as white matter hyperintensities on magnetic resonance imaging. Psychiatry Research, 172(2), 117–120.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown, W. R., & Thore, C. R. (2011). Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathology and Applied Neurobiology, 37(1), 56–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covarrubias, D. J., Rosen, B. R., & Lev, M. H. (2004). Dynamic magnetic resonance perfusion imaging of brain tumors. The Oncologist, 9(5), 528–537.

    Article  PubMed  Google Scholar 

  • De Groot, J. C., De Leeuw, F. E., Oudkerk, M., Van Gijn, J., Hofman, A., Jolles, J., et al. (2002). Periventricular cerebral white matter lesions predict rate of cognitive decline. Annals of Neurology, 52(3), 335–341.

    Article  PubMed  Google Scholar 

  • De Leeuw, F.-E., De Groot, J., Bots, M., Witteman, J., Oudkerk, M., Hofman, A., et al. (2000). Carotid atherosclerosis and cerebral white matter lesions in a population based magnetic resonance imaging study. Journal of Neurology, 247(4), 291–296.

    Article  PubMed  Google Scholar 

  • Debette, S., & Markus, H. (2010). The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ, 341, c3666.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dufouil, C., Godin, O., Chalmers, J., Coskun, O., MacMahon, S., Tzourio-Mazoyer, N., et al. (2009). Severe cerebral white matter hyperintensities predict severe cognitive decline in patients with cerebrovascular disease history. Stroke, 40(6), 2219–2221.

    Article  PubMed  Google Scholar 

  • Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H., & Zimmerman, R. (1987). MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJNR. American Journal of Neuroradiology, 149(2), 351–356.

    CAS  Google Scholar 

  • Fazekas, F., Kleinert, R., Offenbacher, H., Schmidt, R., Kleinert, G., Payer, F., et al. (1993). Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology, 43(9), 1683–1689.

    Article  CAS  PubMed  Google Scholar 

  • Federau, C., Maeder, P., O’Brien, K., Browaeys, P., Meuli, R., & Hagmann, P. (2012). Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging. Radiology, 265(3), 874–881.

    Article  PubMed  Google Scholar 

  • Federau, C., O’Brien, K., Meuli, R., Hagmann, P., & Maeder, P. (2014). Measuring brain perfusion with intravoxel incoherent motion (IVIM): initial clinical experience. Journal of Magnetic Resonance Imaging, 39(3), 624–632.

    Article  PubMed  Google Scholar 

  • Filley, C. M. (1998). The behavioral neurology of cerebral white matter. Neurology, 50(6), 1535–1540.

    Article  CAS  PubMed  Google Scholar 

  • Fritzsche, K. H., Neher, P. F., Reicht, I., van Bruggen, T., Goch, C., Reisert, M., et al. (2012). MITK diffusion imaging. Methods of Information in Medicine, 51(5), 441.

    Article  CAS  PubMed  Google Scholar 

  • Grueter, B. E., & Schulz, U. G. (2012). Age-related cerebral white matter disease (leukoaraiosis): a review. Postgraduate Medical Journal, 88(1036), 79–87.

    Article  PubMed  Google Scholar 

  • Haller, S., Kovari, E., Herrmann, F. R., Cuvinciuc, V., Tomm, A.-M., Zulian, G. B., et al. (2013). Do brain T2/FLAIR white matter hyperintensities correspond to myelin loss in normal aging? A radiologic-neuropathologic correlation study. Acta Neuropathologica Communications, 1(1), 14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Helenius, J., Soinne, L., Salonen, O., Kaste, M., & Tatlisumak, T. (2002). Leukoaraiosis, ischemic stroke, and normal white matter on diffusion-weighted MRI. Stroke, 33(1), 45–50.

    Article  PubMed  Google Scholar 

  • Hu, Y.-C., Yan, L.-F., Wu, L., Du, P., Chen, B.-Y., Wang, L., et al. (2014). Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: efficacy in preoperative grading. Scientific Reports, 4, 7208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy, K. M., & Raz, N. (2009). Pattern of normal age-related regional differences in white matter microstructure is modified by vascular risk. Brain Research, 1297, 41–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bihan, D. (2008). Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology, 249(3), 748–752.

    Article  PubMed  Google Scholar 

  • Le Bihan, D., & Turner, R. (1992). The capillary network: a link between IVIM and classical perfusion. Magnetic Resonance in Medicine, 27(1), 171–178.

    Article  PubMed  Google Scholar 

  • Le Bihan, D., Breton, E., Lallemand, D., Aubin, M., Vignaud, J., & Laval-Jeantet, M. (1988). Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 168(2), 497–505.

    Article  PubMed  Google Scholar 

  • Maniega, S. M., Hernández, M. C. V., Clayden, J. D., Royle, N. A., Murray, C., Morris, Z., et al. (2015). White matter hyperintensities and normal-appearing white matter integrity in the aging brain. Neurobiology of Aging, 36(2), 909–918.

    Article  PubMed  PubMed Central  Google Scholar 

  • Markus, H., Lythgoe, D., Ostegaard, L., O’sullivan, M., & Williams, S. (2000). Reduced cerebral blood flow in white matter in ischaemic leukoaraiosis demonstrated using quantitative exogenous contrast based perfusion MRI. Journal of Neurology, Neurosurgery and Psychiatry, 69(1), 48–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marstrand, J., Garde, E., Rostrup, E., Ring, P., Rosenbaum, S., Mortensen, E. L., et al. (2002). Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke, 33(4), 972–976.

    Article  CAS  PubMed  Google Scholar 

  • Moody, D. M., Brown, W. R., Challa, V. R., & Anderson, R. L. (1995). Periventricular venous collagenosis: association with leukoaraiosis. Radiology, 194(2), 469–476.

    Article  CAS  PubMed  Google Scholar 

  • Moody, D. M., Thore, C. R., Anstrom, J. A., Challa, V. R., Langefeld, C. D., & Brown, W. R. (2004). Quantification of afferent vessels shows reduced brain vascular density in subjects with leukoaraiosis. Radiology, 233(3), 883–890.

    Article  PubMed  Google Scholar 

  • O’Sullivan, M., Jones, D. K., Summers, P., Morris, R., Williams, S., & Markus, H. (2001). Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology, 57(4), 632–638.

    Article  PubMed  Google Scholar 

  • Pantoni, L. (2010). Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurology, 9(7), 689–701.

    Article  PubMed  Google Scholar 

  • Powers, W. J., Grubb, R. L., & Raichle, M. E. (1984). Physiological responses to focal cerebral ischemia in humans. Annals of Neurology, 16(5), 546–552.

    Article  CAS  PubMed  Google Scholar 

  • Prins, N. D., & Scheltens, P. (2015). White matter hyperintensities, cognitive impairment and dementia: an update. Nature Reviews Neurology, 11(3), 157–165.

    Article  PubMed  Google Scholar 

  • Sabri, O., Ringelstein, E.-B., Hellwig, D., Schneider, R., Schreckenberger, M., Kaiser, H.-J., et al. (1999). Neuropsychological impairment correlates with hypoperfusion and hypometabolism but not with severity of white matter lesions on MRI in patients with cerebral microangiopathy. Stroke, 30(3), 556–566.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., et al. (2012). An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. NeuroImage, 59(4), 3774–3783.

    Article  PubMed  Google Scholar 

  • Taheri, S., Gasparovic, C., Huisa, B. N., Adair, J. C., Edmonds, E., Prestopnik, J., et al. (2011). Blood–brain barrier permeability abnormalities in vascular cognitive impairment. Stroke, 42(8), 2158–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor, W. D., Payne, M. E., Krishnan, K. R. R., Wagner, H. R., Provenzale, J. M., Steffens, D. C., et al. (2001). Evidence of white matter tract disruption in MRI hyperintensities. Biological Psychiatry, 50(3), 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Tuladhar, A. M., Reid, A. T., Shumskaya, E., de Laat, K. F., van Norden, A. G., van Dijk, E. J., et al. (2015). Relationship between white matter hyperintensities, cortical thickness, and cognition. Stroke, 46(2), 425–432.

    Article  PubMed  Google Scholar 

  • Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F., Frayne, R., et al. (2013). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurology, 12(8), 822–838.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wirestam, R., Borg, M., Brockstedt, S., Lindgren, A., Holtås, S., & Ståhlberg, F. (2001). Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique. Acta Radiologica, 42(2), 123–128.

    Article  CAS  PubMed  Google Scholar 

  • Wu, W.-C., Chen, Y.-F., Tseng, H.-M., & Yang, S.-C. (2015). Caveat of measuring perfusion indexes using intravoxel incoherent motion magnetic resonance imaging in the human brain. European Radiology, 25(8), 2485–2492.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wurnig, M. C., Donati, O. F., Ulbrich, E., Filli, L., Kenkel, D., Thoeny, H. C., et al. (2015). Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm. Magnetic Resonance in Medicine, 74(5), 1414–1422.

    Article  PubMed  Google Scholar 

  • Yamada, K., Sakai, K., Owada, K., Mineura, K., & Nishimura, T. (2010). Cerebral white matter lesions may be partially reversible in patients with carotid artery stenosis. AJNR. American Journal of Neuroradiology, 31(7), 1350–1352.

    Article  PubMed  Google Scholar 

  • Yamaji, S., Ishii, K., Sasaki, M., Imamura, T., Kitagaki, H., Sakamoto, S., et al. (1997). Changes in cerebral blood flow and oxygen metabolism related to magnetic resonance imaging white matter hyperintensities in Alzheimer’s disease. Journal of Nuclear Medicine, 38(9), 1471–1474.

    CAS  PubMed  Google Scholar 

  • Yan, S., Wan, J., Zhang, X., Tong, L., Zhao, S., Sun, J., et al. (2014). Increased visibility of deep medullary veins in leukoaraiosis: a 3-T MRI study. Frontiers in Aging Neuroscience, 6, 144.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minming Zhang.

Ethics declarations

Funding

This study was funded by Zhejiang Provincial Natural Science Foundation of China (grant number: LZ14H180001), National Natural Science Foundation of China (grant number: 81271530) and Health and Family Planning Commission of Zhejiang Province (grant number: 2016154942).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

“All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.”

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Yu, X., Jiaerken, Y. et al. The relationship between microvasculature in white matter hyperintensities and cognitive function. Brain Imaging and Behavior 11, 503–511 (2017). https://doi.org/10.1007/s11682-016-9531-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9531-8

Keywords

Navigation