Brain Imaging and Behavior

, Volume 11, Issue 2, pp 473–485 | Cite as

“Small World” architecture in brain connectivity and hippocampal volume in Alzheimer’s disease: a study via graph theory from EEG data

  • Fabrizio Vecchio
  • Francesca Miraglia
  • Francesca Piludu
  • Giuseppe Granata
  • Roberto Romanello
  • Massimo Caulo
  • Valeria Onofrj
  • Placido Bramanti
  • Cesare Colosimo
  • Paolo Maria Rossini
Original Research


Brain imaging plays an important role in the study of Alzheimer’s disease (AD), where atrophy has been found to occur in the hippocampal formation during the very early disease stages and to progress in parallel with the disease’s evolution. The aim of the present study was to evaluate a possible correlation between “Small World” characteristics of the brain connectivity architecture—as extracted from EEG recordings—and hippocampal volume in AD patients. A dataset of 144 subjects, including 110 AD (MMSE 21.3) and 34 healthy Nold (MMSE 29.8) individuals, was evaluated. Weighted and undirected networks were built by the eLORETA solutions of the cortical sources’ activities moving from EEG recordings. The evaluation of the hippocampal volume was carried out on a subgroup of 60 AD patients who received a high-resolution T1-weighted sequence and underwent processing for surface-based cortex reconstruction and volumetric segmentation using the Freesurfer image analysis software. Results showed that, quantitatively, more correlation was observed in the right hemisphere, but the same trend was seen in both hemispheres. Alpha band connectivity was negatively correlated, while slow (delta) and fast-frequency (beta, gamma) bands positively correlated with hippocampal volume. Namely, the larger the hippocampal volume, the lower the alpha and the higher the delta, beta, and gamma Small World characteristics of connectivity. Accordingly, the Small World connectivity pattern could represent a functional counterpart of structural hippocampal atrophying and related-network disconnection.


Graph theory Alzheimer Functional connectivity EEG Hippocampus eLORETA MRI 



Dr. Francesca Miraglia participated to this study in the framework of her Ph.D. program at the Doctoral School in Neuroscience, Department of Neuroscience, Catholic University of Rome, Italy. This work was supported by the Italian Ministry of Health for Institutional Research (Ricerca corrente) and by the Italian Ministry of Instruction, University and Research MIUR (“Approccio integrato clinico e sperimentale allo studio dell’invecchiamento cerebrale e delle malattie neurodegenerative: basi molecolari, epidemiologia genetica, neuroimaging multimodale e farmacogenetica. (Merit)” and “Functional connectivity and neuroplasticity in physiological and pathological aging. Prot. 2010SH7H3F (ConnAge)” PRIN project).

Compliance with ethical standards


This work was supported by the Italian Ministry of Health for Institutional Research (Ricerca corrente) and by the Italian Ministry of Instruction, University and Research MIUR (“Approccio integrato clinico e sperimentale allo studio dell’invecchiamento cerebrale e delle malattie neurodegenerative: basi molecolari, epidemiologia genetica, neuroimaging multimodale e farmacogenetica. (Merit)” and “Functional connectivity and neuroplasticity in physiological and pathological aging. Prot. 2010SH7H3F (ConnAge)” PRIN project).

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Andersen, P., Morris, R., Amaral, D., Bliss, T., & O’Keefe, J. (2007) The hippocampus book. Oxford University Press: Oxford.Google Scholar
  2. Aoki, Y., Ishii, R., Pascual-Marqui, R. D., Canuet, L., Ikeda, S., Hata, M., et al. (2015). Detection of EEG-resting state independent networks by eLORETA-ICA method. Frontiers in Human Neuroscience, 9, 31.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Apostolova, L. G., Green, A. E., Babakchanian, S., Hwang, K. S., Chou, Y. Y., Toga, A. W., et al. (2012). Hippocampal atrophy and ventricular enlargement in normal aging, mild cognitive impairment (MCI), and Alzheimer Disease. Alzheimer Disease and Associated Disorders, 26, 17–27.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Babiloni, C., Vecchio, F., Mirabella, G., Buttiglione, M., Sebastiano, F., Picardi, A., et al. (2009). Hippocampal, amygdala, and neocortical synchronization of theta rhythms is related to an immediate recall during rey auditory verbal learning test. Human Brain Mapping, 30, 2077–2089.CrossRefPubMedGoogle Scholar
  5. Barnes, J., Boyes, R. G., Lewis, E. B., Schott, J. M., Frost, C., Scahill, R. I., et al. (2007). Automatic calculation of hippocampal atrophy rates using a hippocampal template and the boundary shift integral. Neurobiology of Aging, 28, 1657–1663.CrossRefPubMedGoogle Scholar
  6. Barry, R. J., De Blasio, F. M., & Borchard, J. P. (2014). Sequential processing in the equiprobable auditory Go/NoGo task: children vs. adults. Clinical Neurophysiology, 125, 1995–2006.CrossRefPubMedGoogle Scholar
  7. Bassett, D. S. & Bullmore, E. (2006). Small-world brain networks. The Neuroscientist, 12, 512–523.CrossRefPubMedGoogle Scholar
  8. Blinowska, K. J. & Kaminski, M. (2013). Functional brain networks: random, “small world” or deterministic? PloS One, 8, e78763.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bobinski, M., de Leon, M. J., Wegiel, J., Desanti, S., Convit, A., Saint Louis, L. A., et al. (2000). The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience, 95, 721–725.CrossRefPubMedGoogle Scholar
  10. Brett, M., Johnsrude, I. S., & Owen, A. M. (2002). The problem of functional localization in the human brain. Nature Reviews. Neuroscience, 3, 243–249.CrossRefPubMedGoogle Scholar
  11. Buzsaki, G. & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 1926–1929.CrossRefPubMedGoogle Scholar
  12. Canuet, L., Ishii, R., Pascual-Marqui, R. D., Iwase, M., Kurimoto, R., Aoki, Y., et al. (2011). Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PloS One, 6, e27863.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Carlesimo, G. A., Caltagirone, C., & Gainotti, G. (1996). The Mental Deterioration Battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. The Group for the Standardization of the Mental Deterioration Battery. European Neurology, 36, 378–384.CrossRefPubMedGoogle Scholar
  14. Chandler, M. J., Lacritz, L. H., Cicerello, A. R., Chapman, S. B., Honig, L. S., Weiner, M. F., et al. (2004). Three-word recall in normal aging. Journal of Clinical and Experimental Neuropsychology, 26, 1128–1133.CrossRefPubMedGoogle Scholar
  15. D’Amelio, M. & Rossini, P. M. (2012). Brain excitability and connectivity of neuronal assemblies in Alzheimer’s disease: from animal models to human findings. Progress in Neurobiology, 99, 42–60.CrossRefPubMedGoogle Scholar
  16. Delacourte, A., David, J. P., Sergeant, N., Buee, L., Wattez, A., Vermersch, P., et al. (1999). The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology, 52, 1158–1165.CrossRefPubMedGoogle Scholar
  17. deToledo-Morrell, L., Stoub, T. R., Bulgakova, M., Wilson, R. S., Bennett, D. A., Leurgans, S., et al. (2004). MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiology of Aging, 25, 1197–1203.CrossRefPubMedGoogle Scholar
  18. Dierks, T., Jelic, V., Pascual-Marqui, R. D., Wahlund, L., Julin, P., Linden, D. E., et al. (2000). Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clinical Neurophysiology, 111, 1817–1824.CrossRefPubMedGoogle Scholar
  19. Du, A. T., Schuff, N., Amend, D., Laakso, M. P., Hsu, Y. Y., Jagust, W. J., et al. (2001). Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 71, 441–447.CrossRefPubMedGoogle Scholar
  20. Dubois, B., Feldman, H. H., Jacova, C., Cummings, J. L., DeKosky, S. T., Barberger-Gateau, P., et al. (2010). Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurology, 9, 1118–1127.CrossRefPubMedGoogle Scholar
  21. Dubois, B., Feldman, H. H., Jacova, C., Hampel, H., Molinuevo, J. L., Blennow, K., et al. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurology, 13, 614–629.CrossRefPubMedGoogle Scholar
  22. Fox, N. C., Warrington, E. K., Freeborough, P. A., Hartikainen, P., Kennedy, A. M., Stevens, J. M., et al. (1996). Presymptomatic hippocampal atrophy in Alzheimer’s disease. A longitudinal MRI study. Brain, 119(Pt 6), 2001–2007.CrossRefPubMedGoogle Scholar
  23. Fox, N. C., Crum, W. R., Scahill, R. I., Stevens, J. M., Janssen, J. C., & Rossor, M. N. (2001). Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet, 358, 201–205.CrossRefPubMedGoogle Scholar
  24. Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56–78.CrossRefGoogle Scholar
  25. Fuchs, M., Kastner, J., Wagner, M., Hawes, S., & Ebersole, J. S. (2002). A standardized boundary element method volume conductor model. Clinical Neurophysiology, 113, 702–712.CrossRefPubMedGoogle Scholar
  26. Gosche, K. M., Mortimer, J. A., Smith, C. D., Markesbery, W. R., & Snowdon, D. A. (2002). Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology, 58, 1476–1482.CrossRefPubMedGoogle Scholar
  27. Greenblatt, R. E., Ossadtchi, A., & Pflieger, M. E. (2005). Local Linear Estimators for the Bioelectromagnetic Inverse Problem. IEEE Transactions on Signal Processing, 53, 3403–3412.CrossRefGoogle Scholar
  28. Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. The British Journal of Psychiatry, 140, 566–572.CrossRefPubMedGoogle Scholar
  29. Ikeda, S., Mizuno-Matsumoto, Y., Canuet, L., Ishii, R., Aoki, Y., Hata, M., et al. (2015). Emotion regulation of neuroticism: emotional information processing related to psychosomatic state evaluated by electroencephalography and exact low-resolution brain electromagnetic tomography. Neuropsychobiology, 71, 34–41.CrossRefPubMedGoogle Scholar
  30. Iriarte, J., Urrestarazu, E., Valencia, M., Alegre, M., Malanda, A., Viteri, C., et al. (2003). Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study. Journal of Clinical Neurophysiology, 20, 249–257.CrossRefPubMedGoogle Scholar
  31. Jack Jr., C. R., Petersen, R. C., Xu, Y. C., O’Brien, P. C., Smith, G. E., Ivnik, R. J., et al. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52, 1397–1403.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jack Jr., C. R., Dickson, D. W., Parisi, J. E., Xu, Y. C., Cha, R. H., O’Brien, P. C., et al. (2002). Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology, 58, 750–757.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jack Jr., C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., et al. (2008). The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27, 685–691.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jovicich, J., Minati, L., Marizzoni, M., Marchitelli, R., Sala-Llonch, R., Bartres-Faz, D., et al. (2015). Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: A multicentric resting-state fMRI study. NeuroImage, 124, 442–454.CrossRefPubMedGoogle Scholar
  35. Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui, V., et al. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37, 163–178.CrossRefPubMedGoogle Scholar
  36. Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. NeuroImage, 34, 1600–1611.CrossRefPubMedGoogle Scholar
  37. Kaminski, M., Blinowska, K., & Szclenberger, W. (1997). Topographic analysis of coherence and propagation of EEG activity during sleep and wakefulness. Electroencephalography and Clinical Neurophysiology, 102, 216–227.CrossRefPubMedGoogle Scholar
  38. Killiany, R. J., Hyman, B. T., Gomez-Isla, T., Moss, M. B., Kikinis, R., Jolesz, F., et al. (2002). MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology, 58, 1188–1196.CrossRefPubMedGoogle Scholar
  39. Kimura, F. (2000). Cholinergic modulation of cortical function: a hypothetical role in shifting the dynamics in cortical network. Neuroscience Research, 38, 19–26.CrossRefPubMedGoogle Scholar
  40. Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 24, 61–100.CrossRefPubMedGoogle Scholar
  41. Klimesch, W. (1997). EEG-alpha rhythms and memory processes. International Journal of Psychophysiology, 26, 319–340.CrossRefPubMedGoogle Scholar
  42. Klimesch, W., Doppelmayr, M., Russegger, H., Pachinger, T., & Schwaiger, J. (1998). Induced alpha band power changes in the human EEG and attention. Neuroscience Letters, 244, 73–76.CrossRefPubMedGoogle Scholar
  43. Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10, 120–131.CrossRefPubMedGoogle Scholar
  44. Lawton, M. P. & Brody, E. M. (1969). Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist, 9, 179–186.CrossRefPubMedGoogle Scholar
  45. Marizzoni, M., Antelmi, L., Bosch, B., Bartres-Faz, D., Muller, B. W., Wiltfang, J., et al. (2015). Longitudinal reproducibility of automatically segmented hippocampal subfields: a multisite European 3 T study on healthy elderly. Human Brain Mapping, 36, 3516–3527.CrossRefPubMedGoogle Scholar
  46. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1412), 1293–1322.CrossRefPubMedPubMedCentralGoogle Scholar
  47. McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack Jr., C. R., Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement, 7, 263–269.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Miraglia, F., Vecchio, F., Bramanti, P., & Rossini, P. (2015a). EEG characteristics in “eyes open” vs “eyes closed” conditions: small world network architecture in healthy aging and age-related brain degeneration. Clinical Neurophysiology, 127, 1261–1268.CrossRefPubMedGoogle Scholar
  49. Miraglia, F., Vecchio, F., Bramanti, P., & Rossini, P. (2015b). Small-worldness characteristics and its gender relation in specific hemispheric networks. Neuroscience, 310, 1–11.CrossRefPubMedGoogle Scholar
  50. Mobascher, A., Brinkmeyer, J., Warbrick, T., Musso, F., Wittsack, H. J., Stoermer, R., et al. (2009). Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimuli–a fMRI/EEG study. NeuroImage, 44(3), 1081–1092.CrossRefPubMedGoogle Scholar
  51. Modrego, P. J. (2006). Predictors of conversion to dementia of probable Alzheimer type in patients with mild cognitive impairment. Current Alzheimer Research, 3, 161–170.CrossRefPubMedGoogle Scholar
  52. Monaco, M., Costa, A., Caltagirone, C., & Carlesimo, G. A. (2013). Forward and backward span for verbal and visuo-spatial data: standardization and normative data from an Italian adult population. Neurological Sciences, 34, 749–754.CrossRefPubMedGoogle Scholar
  53. Mulert, C., Jager, L., Schmitt, R., Bussfeld, P., Pogarell, O., Moller, H. J., et al. (2004). Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. NeuroImage, 22, 83–94.CrossRefPubMedGoogle Scholar
  54. Olbrich, S., Mulert, C., Karch, S., Trenner, M., Leicht, G., Pogarell, O., et al. (2009). EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. NeuroImage, 45, 319–332.CrossRefPubMedGoogle Scholar
  55. Onnela, J. P., Saramaki, J., Kertesz, J., & Kaski, K. (2005). Intensity and coherence of motifs in weighted complex networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 71, 065103.CrossRefPubMedGoogle Scholar
  56. Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and Findings in Experimental and Clinical Pharmacology, 24 Suppl D, 5–12.PubMedGoogle Scholar
  57. Pascual-Marqui RD. (2007) Instantaneous and lagged measurements of linear and nonlinear dependence between groups of multivariate time series: frequency decomposition. arXiv preprint arXiv:0711 1455.Google Scholar
  58. Pascual-Marqui RD. (2009) Theory of the EEG Inverse Problem. In: 2009 Artech House B, editor. Quantitative EEG Analysis: Methods and Clinical Applications., pp. 121–140.Google Scholar
  59. Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18, 49–65.CrossRefPubMedGoogle Scholar
  60. Pitkanen, A., Laakso, M., Kalviainen, R., Partanen, K., Vainio, P., Lehtovirta, M., et al. (1996). Severity of hippocampal atrophy correlates with the prolongation of MRI T2 relaxation time in temporal lobe epilepsy but not in Alzheimer’s disease. Neurology, 46, 1724–1730.CrossRefPubMedGoogle Scholar
  61. Pizzagalli, D. A., Pascual-Marqui, R. D., Nitschke, J. B., Oakes, T. R., Larson, C. L., Abercrombie, H. C., et al. (2001). Anterior cingulate activity as a predictor of degree of treatment response in major depression: evidence from brain electrical tomography analysis. The American Journal of Psychiatry, 158, 405–415.CrossRefPubMedGoogle Scholar
  62. Pizzagalli, D. A., Oakes, T. R., Fox, A. S., Chung, M. K., Larson, C. L., Abercrombie, H. C., et al. (2004). Functional but not structural subgenual prefrontal cortex abnormalities in melancholia. Molecular Psychiatry, 9(325), 393–405.CrossRefGoogle Scholar
  63. Pohlack, S. T., Meyer, P., Cacciaglia, R., Liebscher, C., Ridder, S., & Flor, H. (2014). Bigger is better! Hippocampal volume and declarative memory performance in healthy young men. Brain Structure & Function, 219, 255–267.CrossRefGoogle Scholar
  64. Ramyead, A., Kometer, M., Studerus, E., Koranyi, S., Ittig, S., Gschwandtner, U., et al. (2014). Aberrant current source-density and lagged phase synchronization of neural oscillations as markers for emerging psychosis. Schizophrenia Bulletin, 41, 919–929.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rey, A. (1968). Reattivo Della Figura Complessa. Manuale. Organizzazioni Speciali, Firenze.Google Scholar
  66. Ricceri, L., Minghetti, L., Moles, A., Popoli, P., Confaloni, A., De, S. R., et al. (2004). Cognitive and neurological deficits induced by early and prolonged basal forebrain cholinergic hypofunction in rats. Experimental Neurology, 189, 162–172.CrossRefPubMedGoogle Scholar
  67. Rienstra, C. M. (2013). Amyloid structures from Alzheimer’s disease patients. Structure, 21, 1722–1723.CrossRefPubMedGoogle Scholar
  68. Roman, G. C., Tatemichi, T. K., Erkinjuntti, T., Cummings, J. L., Masdeu, J. C., Garcia, J. H., et al. (1993). Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN international workshop. Neurology, 43, 250–260.CrossRefPubMedGoogle Scholar
  69. Rosen, W. G., Terry, R. D., Fuld, P. A., Katzman, R., & Peck, A. (1980). Pathological verification of ischemic score in differentiation of dementias. Annals of Neurology, 7, 486–488.CrossRefPubMedGoogle Scholar
  70. Rossini, P. M., Desiato, M. T., Lavaroni, F., & Caramia, M. D. (1991). Brain excitability and electroencephalographic activation: non-invasive evaluation in healthy humans via transcranial magnetic stimulation. Brain Research, 567, 111–119.CrossRefPubMedGoogle Scholar
  71. Rullmann, M., Anwander, A., Dannhauer, M., Warfield, S. K., Duffy, F. H., & Wolters, C. H. (2009). EEG source analysis of epileptiform activity using a 1 mm anisotropic hexahedra finite element head model. NeuroImage, 44, 399–410.CrossRefPubMedGoogle Scholar
  72. Scheltens, P., Fox, N., Barkhof, F., & De, C. C. (2002). Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurology, 1, 13–21.CrossRefPubMedGoogle Scholar
  73. Scoville, W. B. & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sekihara, K., Sahani, M., & Nagarajan, S. S. (2005). Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage, 25, 1056–1067.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Selden, N. R., Gitelman, D. R., Salamon-Murayama, N., Parrish, T. B., & Mesulam, M. M. (1998). Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain, 121(Pt 12), 2249–2257.CrossRefPubMedGoogle Scholar
  76. Shi, F., Liu, B., Zhou, Y., Yu, C., & Jiang, T. (2009). Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer’s disease: Meta-analyses of MRI studies. Hippocampus, 19, 1055–1064.CrossRefPubMedGoogle Scholar
  77. Sporns, O. & Honey, C. J. (2006). Small worlds inside big brains. Proceedings of the National Academy of Sciences of the United States of America, 103, 19219–19220.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17, 92–99.CrossRefPubMedGoogle Scholar
  79. Stam, C. J., de Haan, W., Daffertshofer, A., BF, J., Manshanden, I., van Walsum AM, v. C., et al. (2009). Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain, 132, 213–224.CrossRefPubMedGoogle Scholar
  80. Steriade, M. & Llinas, R. R. (1988). The functional states of the thalamus and the associated neuronal interplay. Physiological Reviews, 68, 649–742.PubMedGoogle Scholar
  81. Tanaka, Y., Hanyu, H., Sakurai, H., Takasaki, M., & Abe, K. (2003). Atrophy of the substantia innominata on magnetic resonance imaging predicts response to donepezil treatment in Alzheimer’s disease patients. Dementia and Geriatric Cognitive Disorders, 16, 119–125.CrossRefPubMedGoogle Scholar
  82. Teipel, S. J., Flatz, W. H., Heinsen, H., Bokde, A. L., Schoenberg, S. O., Stockel, S., et al. (2005). Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain, 128, 2626–2644.CrossRefPubMedGoogle Scholar
  83. Van, P. C. (2004). Relationship between hippocampal volume and memory ability in healthy individuals across the lifespan: review and meta-analysis. Neuropsychologia, 42, 1394–1413.CrossRefGoogle Scholar
  84. van der Flier, W. M., van Straaten, E. C., Barkhof, F., Ferro, J. M., Pantoni, L., Basile, A. M., et al. (2005). Medial temporal lobe atrophy and white matter hyperintensities are associated with mild cognitive deficits in non-disabled elderly people: the LADIS study. Journal of Neurology, Neurosurgery, and Psychiatry, 76, 1497–1500.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Vecchio, F., Babiloni, C., Lizio, R., Fallani, F. V., Blinowska, K., Verrienti, G., et al. (2013). Resting state cortical EEG rhythms in Alzheimer’s disease: toward EEG markers for clinical applications: a review. Supplements to Clinical Neurophysiology, 62, 223–236.CrossRefPubMedGoogle Scholar
  86. Vecchio, F., Miraglia, F., Bramanti, P., & Rossini, P. M. (2014a). Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data. Journal of Alzheimer’s Disease, 41, 1239–1249.PubMedGoogle Scholar
  87. Vecchio, F., Miraglia, F., Marra, C., Quaranta, D., Vita, M. G., Bramanti, P., et al. (2014b). Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data. Journal of Alzheimer’s Disease, 41, 113–127.PubMedGoogle Scholar
  88. Vecchio, F., Miraglia, F., Valeriani, L., Scarpellini. MG., Bramanti, P., Mecarelli, O., Rossini, PM. (2014c) Cortical brain connectivity and b-type natriuretic peptide in patients with congestive heart failure. Clinical EEG and Neuroscience.Google Scholar
  89. Vecchio, F., Miraglia, F., Curcio, G., Altavilla, R., Scrascia, F., Giambattistelli, F., et al. (2015a). Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data. Journal of Alzheimer’s Disease, 45(3), 745–756.PubMedGoogle Scholar
  90. Vecchio, F., Miraglia, F., Valeriani, L., Scarpellini, M. G., Bramanti, P., Mecarelli, O., et al. (2015b). Cortical brain connectivity and b-type natriuretic peptide in patients with congestive heart failure. Clinical EEG and Neuroscience, 46, 224–229.CrossRefPubMedGoogle Scholar
  91. Vecchio, F., Miraglia, F., Quaranta, D., Granata, G., Romanello, R., Marra, C., Bramanti, P., Rossini, PM. (2016) Cortical connectivity and memory performance in cognitive decline: a study via graph theory from EEG data. Neuroscience, 316, 143–50.Google Scholar
  92. Vitacco, D., Brandeis, D., Pascual-Marqui, R., & Martin, E. (2002). Correspondence of event-related potential tomography and functional magnetic resonance imaging during language processing. Human Brain Mapping, 17, 4–12.CrossRefPubMedGoogle Scholar
  93. Volpe, U., Mucci, A., Bucci, P., Merlotti, E., Galderisi, S., & Maj, M. (2007). The cortical generators of P3a and P3b: a LORETA study. Brain Research Bulletin, 73, 220–230.CrossRefPubMedGoogle Scholar
  94. Watts, D. J. & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.CrossRefPubMedGoogle Scholar
  95. Whitwell, J. L., Crum, W. R., Watt, H. C., & Fox, N. C. (2001). Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. AJNR. American Journal of Neuroradiology, 22, 1483–1489.PubMedGoogle Scholar
  96. Wolz, R., Julkunen, V., Koikkalainen, J., Niskanen, E., Zhang, D. P., Rueckert, D., et al. (2011). Multi-method analysis of MRI images in early diagnostics of Alzheimer’s disease. PloS One, 6, e25446.CrossRefPubMedPubMedCentralGoogle Scholar
  97. Worrell, G. A., Lagerlund, T. D., Sharbrough, F. W., Brinkmann, B. H., Busacker, N. E., Cicora, K. M., et al. (2000). Localization of the epileptic focus by low-resolution electromagnetic tomography in patients with a lesion demonstrated by MRI. Brain Topography, 12, 273–282.CrossRefPubMedGoogle Scholar
  98. Xie, T. & He, Y. (2011). Mapping the Alzheimer’s brain with connectomics. Frontiers in Psychology, 2, 77.Google Scholar
  99. Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M., et al. (1982). Development and validation of a geriatric depression screening scale: a preliminary report. Journal of Psychiatric Research, 17, 37–49.CrossRefPubMedGoogle Scholar
  100. Zimny, A., Szewczyk, P., Trypka, E., Wojtynska, R., Noga, L., Leszek, J., et al. (2011). Multimodal imaging in diagnosis of Alzheimer’s disease and amnestic mild cognitive impairment: value of magnetic resonance spectroscopy, perfusion, and diffusion tensor imaging of the posterior cingulate region. Journal of Alzheimer’s Disease, 27, 591–601.PubMedGoogle Scholar
  101. Zumsteg, D., Wennberg, R. A., Treyer, V., Buck, A., & Wieser, H. G. (2005). H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus. Neurology, 65, 1657–1660.CrossRefPubMedGoogle Scholar
  102. Zumsteg, D., Friedman, A., Wieser, H. G., & Wennberg, R. A. (2006a). Propagation of interictal discharges in temporal lobe epilepsy: correlation of spatiotemporal mapping with intracranial foramen ovale electrode recordings. Clinical Neurophysiology, 117, 2615–2626.CrossRefPubMedGoogle Scholar
  103. Zumsteg, D., Lozano, A. M., & Wennberg, R. A. (2006b). Depth electrode recorded cerebral responses with deep brain stimulation of the anterior thalamus for epilepsy. Clinical Neurophysiology, 117, 1602–1609.CrossRefPubMedGoogle Scholar
  104. Zumsteg, D., Lozano, A. M., Wieser, H. G., & Wennberg, R. A. (2006c). Cortical activation with deep brain stimulation of the anterior thalamus for epilepsy. Clinical Neurophysiology, 117, 192–207.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fabrizio Vecchio
    • 1
  • Francesca Miraglia
    • 1
  • Francesca Piludu
    • 2
    • 3
  • Giuseppe Granata
    • 1
  • Roberto Romanello
    • 1
  • Massimo Caulo
    • 4
  • Valeria Onofrj
    • 3
  • Placido Bramanti
    • 2
  • Cesare Colosimo
    • 3
  • Paolo Maria Rossini
    • 1
    • 5
  1. 1.Brain Connectivity Laboratory, IRCCS San Raffaele PisanaRomeItaly
  2. 2.IRCCS Centro Neurolesi Bonino-PulejoMessinaItaly
  3. 3.Department of Radiologic SciencesCatholic University, Policlinic A. GemelliRomeItaly
  4. 4.Department of Neuorscience, Imaging and Clinical SciencesUniversity of ChietiChietiItaly
  5. 5.Department of Geriatrics, Neuroscience & Orthopedics, Institute of NeurologyCatholic University, Policlinic A. GemelliRomeItaly

Personalised recommendations