Brain Imaging and Behavior

, Volume 11, Issue 2, pp 444–453 | Cite as

Disrupted brain connectivity networks in acute ischemic stroke patients

  • Yifei Zhu
  • Lin Bai
  • Panpan Liang
  • Shan Kang
  • Hengbo Gao
  • Haiqing Yang
Original Research


Neuroimaging studies have shown that local brain lesions could result in abnormal information transfer far from the lesion site in acute ischemic stroke (AIS) patients; yet, little is known about alternations of the topological organization of whole-brain networks in AIS. By using resting state functional magnetic resonance imaging (MRI) and graph theory analysis, we systematically investigated the topological properties of the functional brain networks of 28 healthy controls (HC, age: 56.9 ± 0.45 years) and 29 AIS (age: 57.6 ± 0.21 years) with proximal anterior circulation occlusion within 12 h of symptom onset. In our results, both the AIS and HC groups exhibited small-world network organization, suggesting a functional balance between local specialization and global integration. However, compared with the HC, the AIS patients had a lower shortest path length and higher global efficiency, indicating a tendency of randomization in patients’ functional brain networks. The AIS patients had an increased nodal degree in the precuneus (PCUN), middle frontal gyrus (MFG), medial part of the superior frontal gyrus (SFGmed), orbital part of the middle frontal gyrus, and the opercular part of the inferior frontal gyrus, and increased nodal efficiency in the PUCN, MFG, SFGmed, and the angular gyrus. The decreased nodal degree in AIS was found in the heschl gyrus (HES), and no significant decreased nodal efficiency was observed. The dysfunctional connections were mainly concentrated in the HES and prefrontal cortex. Furthermore, the altered nodal centrality of the MFG and abnormal functional connectivity in AIS were associated with patients’ Mini-Mental State Examination scores. These results suggested that interrupted functional connectivity in language system organization after focal brain lesions could also result in disruptions in the topological organization of other brain circuits, and this may contribute to disturbances in cognition in AIS patients.


Acute ischemic stroke Brain connectome Cognitive performance 



This work was supported by the Food and Drug Safety Science and Technology Project of Hebei provincial Food and Drug Administration under project No. ZD2015031.

Compliance with ethical standards

Conflict of interest

Yifei Zhu, Lin Bai, Panpan Liang, Shan Kang, Hengbo Gao, Haiqing Yang declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Ethical statements

Informed consent was obtained from all individual participants included in the study.


  1. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3(2), e17.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72.CrossRefPubMedGoogle Scholar
  3. Barker-Collo, S. L., Feigin, V. L., Lawes, C. M., Parag, V., Senior, H., & Rodgers, A. (2009). Reducing attention deficits after stroke using attention process training a randomized controlled trial. Stroke, 40(10), 3293–3298.CrossRefPubMedGoogle Scholar
  4. Breier, J., Hasan, K., Zhang, W., Men, D., & Papanicolaou, A. (2008). Language dysfunction after stroke and damage to white matter tracts evaluated using diffusion tensor imaging. American Journal of Neuroradiology, 29(3), 483–487.CrossRefPubMedGoogle Scholar
  5. Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: graphical models of the human brain connectome. Annual Review of Clinical Psychology, 7, 113–140.CrossRefPubMedGoogle Scholar
  6. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.CrossRefPubMedGoogle Scholar
  7. Bullmore, E. T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E., & Brammer, M. J. (1999). Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Transactions on Medical Imaging, 18(1), 32–42.CrossRefPubMedGoogle Scholar
  8. Cheng, H.-L., Lin, C.-J., Soong, B.-W., Wang, P.-N., Chang, F.-C., Wu, Y.-T., et al. (2012). Impairments in cognitive function and brain connectivity in severe asymptomatic carotid stenosis. Stroke, 43(10), 2567–2573.CrossRefPubMedGoogle Scholar
  9. Dacosta‐Aguayo, R., Grana, M., Iturria‐Medina, Y., Fernández‐Andújar, M., López‐Cancio, E., Caceres, C., et al. (2015). Impairment of functional integration of the default mode network correlates with cognitive outcome at three months after stroke. Human Brain Mapping, 36(2), 577–590.CrossRefPubMedGoogle Scholar
  10. Fair, D. A., Dosenbach, N. U., Church, J. A., Cohen, A. L., Brahmbhatt, S., Miezin, F. M., et al. (2007). Development of distinct control networks through segregation and integration. Proceedings of the National Academy Science of the United States of America, 104(33), 13507–13512.CrossRefGoogle Scholar
  11. Fair, D. A., Cohen, A. L., Dosenbach, N. U., Church, J. A., Miezin, F. M., Barch, D. M., et al. (2008). The maturing architecture of the brain’s default network. Proceedings of the National Academy Science of the United States of America, 105(10), 4028–4032.CrossRefGoogle Scholar
  12. Fair, D. A., Nigg, J. T., Iyer, S., Bathula, D., Mills, K. L., Dosenbach, N. U., et al. (2012). Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data. Frontiers in Systems Neuroscience, 6, 80.PubMedGoogle Scholar
  13. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.CrossRefPubMedGoogle Scholar
  14. Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy Science of the United States of America, 101(13), 4637–4642.CrossRefGoogle Scholar
  15. Hayasaka, S., & Laurienti, P. J. (2010). Comparison of characteristics between region-and voxel-based network analyses in resting-state fMRI data. NeuroImage, 50(2), 499–508.CrossRefPubMedGoogle Scholar
  16. He, Y., & Evans, A. (2010). Graph theoretical modeling of brain connectivity. Current Opinion in Neurology, 23(4), 341–350.PubMedGoogle Scholar
  17. He, Y., Chen, Z., & Evans, A. (2008). Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. The Journal of Neuroscience, 28(18), 4756–4766.CrossRefPubMedGoogle Scholar
  18. Ilvonen, T.-M., Kujala, T., Tervaniemi, M., Salonen, O., Näätänen, R., & Pekkonen, E. (2001). The processing of sound duration after left hemisphere stroke: event-related potential and behavioral evidence. Psychophysiology, 38(04), 622–628.CrossRefPubMedGoogle Scholar
  19. Ilvonen, T.-M., Kujala, T., Kiesiläinen, A., Salonen, O., Kozou, H., Pekkonen, E., et al. (2003). Auditory discrimination after left-hemisphere stroke a mismatch negativity follow-up study. Stroke, 34(7), 1746–1751.CrossRefPubMedGoogle Scholar
  20. Ilvonen, T., Kujala, T., Kozou, H., Kiesiläinen, A., Salonen, O., Alku, P., et al. (2004). The processing of speech and non-speech sounds in aphasic patients as reflected by the mismatch negativity (MMN). Neuroscience Letters, 366(3), 235–240.CrossRefPubMedGoogle Scholar
  21. Lecumberri, M. G., & Cooke, M. (2006). Effect of masker type on native and non-native consonant perception in noise. Journal of the Acoustical Society of America, 119(4), 2445–2454.CrossRefGoogle Scholar
  22. Li, X., Liang, Y., Chen, Y., Zhang, J., Wei, D., Chen, K., et al. (2015). Disrupted frontoparietal network mediates white matter structure dysfunction associated with cognitive decline in hypertension patients. Journal of Neuroscience, 35(27), 10015–10024.CrossRefPubMedGoogle Scholar
  23. Lin, C.-J., Tu, P.-C., Chern, C.-M., Hsiao, F.-J., Chang, F.-C., Cheng, H.-L., et al. (2014). Connectivity features for identifying cognitive impairment in presymptomatic carotid stenosis. PloS One, 9, e85441.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liu, J., Zhao, L., Li, G., Xiong, S., Nan, J., Li, J., et al. (2012). Hierarchical alteration of brain structural and functional networks in female migraine sufferers. PloS One, 7(12), e51250.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liu, J., Zhao, L., Lei, F., Zhang, Y., Yuan, K., Gong, Q., et al. (2015). Disrupted resting‐state functional connectivity and its changing trend in migraine suffers. Human Brain Mapping, 36(5), 1892–1907.CrossRefPubMedGoogle Scholar
  26. Papma, J. M., de Groot, M., de Koning, I., Mattace‐Raso, F. U., van der Lugt, A., Vernooij, M. W., et al. (2014). Cerebral small vessel disease affects white matter microstructure in mild cognitive impairment. Human Brain Mapping, 35(6), 2836–2851.CrossRefPubMedGoogle Scholar
  27. Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010). The development of human functional brain networks. Neuron, 67(5), 735–748.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.CrossRefPubMedGoogle Scholar
  29. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52(3), 1059–1069.CrossRefPubMedGoogle Scholar
  30. Scott, S. K., & Johnsrude, I. S. (2003). The neuroanatomical and functional organization of speech perception. Trends in Neurosciences, 26(2), 100–107.CrossRefPubMedGoogle Scholar
  31. Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23(2), 162–171.CrossRefPubMedGoogle Scholar
  32. Sun, Y.-w., Zhou, Y., Xu, Q., Qian, L.-j., Tao, J., & Xu, J.-r. (2011). Abnormal functional connectivity in patients with vascular cognitive impairment, no dementia: a resting-state functional magnetic resonance imaging study. Behavioural Brain Research, 223(2), 388–394.CrossRefPubMedGoogle Scholar
  33. Tuladhar, A. M., Snaphaan, L., Shumskaya, E., Rijpkema, M., Fernandez, G., Norris, D. G., et al. (2013). Default mode network connectivity in stroke patients. PloS One, 8, e66556.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.CrossRefPubMedGoogle Scholar
  35. van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. Journal of Neuroscience, 31(44), 15775–15786.CrossRefPubMedGoogle Scholar
  36. Wang, L., Li, Y., Metzak, P., He, Y., & Woodward, T. S. (2010). Age-related changes in topological patterns of large-scale brain functional networks during memory encoding and recognition. NeuroImage, 50(3), 862–872.CrossRefPubMedGoogle Scholar
  37. Wang, J., Zuo, X., Dai, Z., Xia, M., Zhao, Z., Zhao, X., et al. (2013). Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biological Psychiatry, 73(5), 472–481.CrossRefPubMedGoogle Scholar
  38. Warren, J. E., Crinion, J. T., Ralph, M. A. L., & Wise, R. J. (2009). Anterior temporal lobe connectivity correlates with functional outcome after aphasic stroke. Brain, 132, 3428–3442.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Warrier, C., Wong, P., Penhune, V., Zatorre, R., Parrish, T., Abrams, D., et al. (2009). Relating structure to function: Heschl’s gyrus and acoustic processing. Journal of Neuroscience, 29(1), 61–69.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442.CrossRefPubMedGoogle Scholar
  41. Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., & Jiang, T. (2010). Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Computational Biology, 6(11), e1001006.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. NeuroImage, 53(4), 1197–1207.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yifei Zhu
    • 1
  • Lin Bai
    • 1
  • Panpan Liang
    • 1
  • Shan Kang
    • 1
  • Hengbo Gao
    • 1
  • Haiqing Yang
    • 1
  1. 1.Department of NeurologyThe Second Hospital of Hebei Medical UniversityShijiazhuangPeople’s Republic of China

Personalised recommendations