Advertisement

Brain Imaging and Behavior

, Volume 11, Issue 2, pp 430–443 | Cite as

Altered modular organization of intrinsic brain functional networks in patients with Parkinson’s disease

  • Qing Ma
  • Biao Huang
  • Jinhui Wang
  • Carol Seger
  • Wanqun Yang
  • Changhong Li
  • Junjing Wang
  • Jieying Feng
  • Ling Weng
  • Wenjie Jiang
  • Ruiwang Huang
Original Research

Abstract

Although previous studies reported altered topology of brain functional networks in patients with Parkinson’s disease (PD), the modular organization of brain functional networks in PD patients remains largely unknown. Using the resting-state functional MRI (R-fMRI) and graph theory, we examined the modular organization of brain functional networks in 32 unmedicated patients with early-to-mid motor stage PD and 31 healthy controls. Compared to the controls, the PD patients tended to show decreased integrity and segregation, both within and between modules. This was inferred by significantly increased intra-modular characteristic path length (L p) within four modules: mPFC, SN, SMN, and FPN, decreased inter-modular functional connectivity (FC) between mPFC and SN, SMN, and VN, and decreased intra-modular clustering in the PD patients. Intra-modular characteristic path length within the mPFC showed significantly positive correlation with general cognitive ability in the PD group. Receiver operating characteristic (ROC) analysis revealed that FC between mPFC and SN had the highest significant accuracy in differentiating the patients from the controls. Our findings may provide new insight in understanding the pathological changes that underlie impairment in cognition and movement in Parkinson’s disease.

Keywords

Modularity Graph theory Medial prefrontal cortex (mPFC) Salience network (SN) 

Abbreviation

mPFC

Medial prefrontal cortex

SN

Salience network

FPN

Fronto-parietal network

SMN

Somatomotor network

VN

Visual network

pCER

Posterior cerebellum

DMN

Default mode network

Notes

Compliance with ethical standards

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

This study was funded by the National Natural Science Foundation of China (Grant numbers: 81271548, 81271560, 81371535, 81428013, and 81471654), and Zhejiang Provincial Natural Science Foundation of China (No. LZ13C090001).

Conflict of interest

All of the authors declare no conflicts of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2016_9524_MOESM1_ESM.doc (2.9 mb)
ESM 1 (DOC 2.88 MB)

References

  1. Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26(1), 63–72.PubMedCrossRefGoogle Scholar
  2. Alexander-Bloch, A. F., Gogtay, N., Meunier, D., Birn, R., Clasen, L., Lalonde, F., Lenroot, R., Giedd, J., & Bullmore, E. T. (2010). Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia. Frontiers in Systems Neuroscience, 4(147), 1–16.Google Scholar
  3. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.PubMedCrossRefGoogle Scholar
  4. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—the methods. NeuroImage, 11(6), 805–821.PubMedCrossRefGoogle Scholar
  5. Baggio, H. C., Sala-Llonch, R., Segura, B., Marti, M. J., Valldeoriola, F., Compta, Y., Tolosa, E., & Junqué, C. (2014). Functional brain networks and cognitive deficits in Parkinson’s disease. Human Brain Mapping, 35(9), 4620–4634.PubMedCrossRefGoogle Scholar
  6. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 57, 289–300.Google Scholar
  7. Biundo, R., Calabrese, M., Weis, L., Facchini, S., Ricchieri, G., Gallo, P., & Antonini, A. (2013). Anatomical correlates of cognitive functions in early Parkinson’s disease patients. PloS One, 88, e64222.CrossRefGoogle Scholar
  8. Boller, F., Passafiume, D., Keefe, N. C., Rogers, K., Morrow, L., & Kim, Y. (1984). Visuospatial impairment in Parkinson’s disease: role of perceptual and motor factors. Archives of Neurology, 41(5), 485–490.PubMedCrossRefGoogle Scholar
  9. Borghammer, P., Cumming, P., Østergaard, K., Gjedde, A., Rodell, A., Bailey, C. J., & Vafaee, M. S. (2012). Cerebral oxygen metabolism in patients with early Parkinson’s disease. Journal of the Neurological Sciences, 313(1), 123–128.PubMedCrossRefGoogle Scholar
  10. Braak, H., Tredici, D. K., Rüb, U., de Vos, A. I. R., Steur, N. H. J. E., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24(2), 197–211.PubMedCrossRefGoogle Scholar
  11. Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: graphical models of the human brain connectome. Annual Review of Clinical Psychology, 7(7), 113–140.PubMedCrossRefGoogle Scholar
  12. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198.PubMedCrossRefGoogle Scholar
  13. Cardoso, E. F., Maia, F. M., Fregni, F., Myczkowski, M. L., Melo, L. M., Sato, J. R., Marcolin, M. A., Rigonatti, S. P., Cruz Jr., A. C., & Barbosa, E. R. (2009). Depression in Parkinson’s disease: convergence from voxel-based morphometry and functional magnetic resonance imaging in the limbic thalamus. NeuroImage, 47(2), 467–472.PubMedCrossRefGoogle Scholar
  14. Chen, Z. J., He, Y., Rosa-Neto, P., Gong, G., & Evans, A. C. (2011b). Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI. NeuroImage, 56(1), 235–245.PubMedCrossRefGoogle Scholar
  15. Chen, G., Ward, B. D., Xie, C., Li, W., Wu, Z., Jones, J. L., Franczak, M., Antuono, P., & Li, S.-J. (2011a). Classification of Alzheimer disease, mild cognitive impairment, and normal cognitive status with large-scale network analysis based on resting-state functional MR imaging. Radiology, 259(1), 213–221.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen, Z. J., He, Y., Rosa-Neto, P., Germann, J., & Evans, A. C. (2008). Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cerebral Cortex, 18(10), 2374–2381.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen, G., Zhang, H.-Y., Xie, C., Chen, G., Zhang, Z.-J., Teng, G.-J., & Li, S.-J. (2013). Modular reorganization of brain resting state networks and its independent validation in Alzheimer’s disease patients. Frontiers in Human Neuroscience, 7, 456.PubMedPubMedCentralGoogle Scholar
  18. Christopher, L., Marras, C., Duff-Canning, S., Koshimori, Y., Chen, R., Boileau, I., Segura, B., Monchi, O., Lang, A. E., & Rusjan, P. (2014). Combined insular and striatal dopamine dysfunction are associated with executive deficits in Parkinson’s disease with mild cognitive impairment. Brain, 137(Pt 2), 565–575.PubMedCrossRefGoogle Scholar
  19. Cruse, D., Chennu, S., Chatelle, C., Bekinschtein, T. A., Fernandez-Espejo, D., Pickard, J. D., Laureys, S., & Owen, A. M. (2011). Bedside detection of awareness in the vegetative state: a cohort study. Lancet, 378(9809), 2088–2094.PubMedCrossRefGoogle Scholar
  20. Dai, Z., Yan, C., Li, K., Wang, Z., Wang, J., Cao, M., Lin, Q., Shu, N., Xia, M., & Bi, Y. (2014). Identifying and Mapping Connectivity Patterns of Brain Network Hubs in Alzheimer’s Disease. Cerebral Cortex, 2014 epub bhu246.Google Scholar
  21. Damoiseaux, J., Beckmann, C., Arigita, E. S., Barkhof, F., Scheltens, P., Stam, C., Smith, S., & Rombouts, S. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex, 18(8), 1856–1864.PubMedCrossRefGoogle Scholar
  22. Doyon, J., Gaudreau, D., Castonguay, M., Bedard, P., Bédard, F., & Bouchard, J. (1997). Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain and Cognition, 34(2), 218–245.PubMedCrossRefGoogle Scholar
  23. Dubbelink, K. T. O., Hillebrand, A., Stoffers, D., Deijen, J. B., Twisk, J. W., Stam, C. J., & Berendse, H. W. (2013). Disrupted brain network topology in Parkinson’s disease: a longitudinal magnetoencephalography study. Brain, 137(1), 197–207.CrossRefGoogle Scholar
  24. Euston, D. R., Gruber, A. J., McNaughton, B. L. (2012). The role of medial prefrontal cortex in memory and decision making. Neuron, 76(6), 1057–1070.Google Scholar
  25. Fearnley, J. M., & Lees, A. J. (1991). Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain, 114(5), 2283–2301.PubMedCrossRefGoogle Scholar
  26. Ferri, F., Frassinetti, F., Ardizzi, M., Costantini, M., & Gallese, V. (2012). A sensorimotor network for the bodily self. Journal of Cognitive Neuroscience, 24(7), 1584–1595.PubMedCrossRefGoogle Scholar
  27. Foti, N. J., Hughes, J. M., & Rockmore, D. N. (2011). Nonparametric sparsification of complex multiscale networks. PloS One, 6(2), e16431.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270–3283.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Friston, K. J., Williams, S., Howard, R., Frackowial, R. S., & Turner, R. (1996). Movement related effects in fMRI time series. Magnetic Resonance in Medicine, 35(3), 346–355.PubMedCrossRefGoogle Scholar
  30. Gorges, M., Müller, H. P., Lulé, D., Consortium, L., Pinkhardt, E. H., Ludolph, A. C., & Kassubek, J. (2015). To rise and to fall: functional connectivity in cognitively normal and cognitively impaired patients with Parkinson’s disease. Neurobiology of Aging, 36(4), 1727–1735.PubMedCrossRefGoogle Scholar
  31. Göttlich, M., Münte, T. F., Heldmann, M., Kasten, M., Hagenah, J., & Krämer, U. M. (2013). Altered resting state brain networks in Parkinson’s disease. PloS One, 8(10), e77336.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Guimera, R., & Amaral, L. A. N. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895–900.PubMedPubMedCentralCrossRefGoogle Scholar
  33. de Haan, W., van der Flier, W. M., Koene, T., Smits, L., Scheltens, P., & Stam, C. J. (2012). Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer’s disease. NeuroImage, 59(4), 3085–3093.PubMedCrossRefGoogle Scholar
  34. Hawkes, C. H., Tredici, K. D., & Braak, H. (2009). Parkinson’s disease. Annals of the New York Academy of Sciences, 1170(1), 615–622.PubMedCrossRefGoogle Scholar
  35. He, Y., Wang, J., Wang, L., Chen, Z. J., Yan, C., Yang, H., Tang, H., Zhu, C., Gong, Q., & Zang, Y. (2009). Uncovering intrinsic modular organization of spontaneous brain activity in humans. PloS One, 4, e5226.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Helmich, R. C., Derikx, L. C., Bakker, M., Scheeringa, R., Bloem, B. R., & Toni, I. (2010). Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cerebral Cortex, 20(5), 1175–1186.PubMedCrossRefGoogle Scholar
  37. Hoehn, M. M., & Yahr, M. D. (1998). Parkinsonism: onset, progression, and mortality. Neurology, 50(2), 318–318.PubMedCrossRefGoogle Scholar
  38. Jenkins, A. C., & Mitchell, J. P. (2011). Medial prefrontal cortex subserves diverse forms of self-reflection. Social Neuroscience, 6(3), 211–218.PubMedCrossRefGoogle Scholar
  39. Jucker, M., & Walker, L. C. (2013). Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature, 501(7465), 45–51.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kikuchi, A., Takeda, A., Kimpara, T., Nakagawa, M., Kawashima, R., Sugiura, M., Kinomura, S., Fukuda, H., Chida, K., & Okita, N. (2001). Hypoperfusion in the supplementary motor area, dorsolateral prefrontal cortex and insular cortex in Parkinson’s disease. Journal of the Neurological Sciences, 193(1), 29–36.PubMedCrossRefGoogle Scholar
  41. Kurani, A. S., Seidler, R. D., Burciu, R. G., Comella, C. L., Corcos, D. M., Okun, M. S., MacKinnon, C. D., & Vaillancourt, D. E. (2015). Subthalamic nucleus—sensorimotor cortex functional connectivity in de novo and moderate Parkinson’s disease. Neurobiology of Aging, 36(1), 462–469.PubMedCrossRefGoogle Scholar
  42. Lebedev, A. V., Westman, E., Simmons, A., Lebedeva, A., Siepel, F. J., Pereira, J. B., & Aarsland, D. (2014). Large-scale resting state network correlates of cognitive impairment in Parkinson’s disease and related dopaminergic deficits. Frontiers in Systems Neuroscience, 8, 45.PubMedPubMedCentralGoogle Scholar
  43. Long, D., Wang, J., Xuan, M., Gu, Q., Xu, X., Kong, D., & Zhang, M. (2012). Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PloS One, 7, e47714.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Luo, C. Y., Guo, X. Y., Song, W., Chen, Q., Cao, B., Yang, J., Gong, Q. Y., & Shang, H.-F. (2015). Functional connectome assessed using graph theory in drug-naive Parkinson’s disease. Journal of Neurology, 262(60), 1557–1567.PubMedCrossRefGoogle Scholar
  45. Mesulam, M.-M. (1998). From sensation to cognition. Brain, 121(6), 1013–1052.PubMedCrossRefGoogle Scholar
  46. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44(3), 893–905.PubMedCrossRefGoogle Scholar
  47. Newman, M. E. (2004). Analysis of weighted networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 70(5), 056131.PubMedCrossRefGoogle Scholar
  48. Newman, M. E. J. (2006). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74(3), 036104.CrossRefGoogle Scholar
  49. Polito, C., Berti, V., Ramat, S., Vanzi, E., De Cristofaro, M. T., Pellicanò, G., Mungai, F., Marini, P., Formiconi, A. R., & Sorbi, S. (2012). Interaction of caudate dopamine depletion and brain metabolic changes with cognitive dysfunction in early Parkinson’s disease. Neurobiology of Aging, 33(1), 206. e229–206. e239.CrossRefGoogle Scholar
  50. Pont-Sunyer, C., Hotter, A., Gaig, C., Seppi, K., Compta, Y., Katzenschlager, R., Mas, N., Hofeneder, D., Brücke, T., & Bayés, A. (2014). The onset of nonmotor symptoms in Parkinson’s disease (the ONSET PD Study). Movement Disorders, 30(2), 229–237.PubMedCrossRefGoogle Scholar
  51. Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. NeuroImage, 105, 536–551.PubMedCrossRefGoogle Scholar
  52. Putcha, D., Ross, R. S., Cronin-Golomb, A., Janes, A. C., & Stern, C. E. (2015). Altered intrinsic functional coupling between core neurocognitive networks in Parkinson’s disease. Neuroimage Clin, 7, 449–455.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Pyatigorskaya, N., Gallea, C., Garcia-Lorenzo, D., Vidailhet, M., & Lehéricy, S. (2013). A review of the use of magnetic resonance imaging in Parkinson’s disease. Ther. Adv Neurol Disord, 2014, 7(4), 206–220.Google Scholar
  54. Radebaugh, T., & Khachaturian, Z. (1998). Consensus report of the Working Group on: molecular and biochemical markers of Alzheimer’s disease. Neurobiology of Aging, 19(2), 109–116.CrossRefGoogle Scholar
  55. Rae, C. L., Correia, M. M., Altena, E., Hughes, L. E., Barker, R. A., & Rowe, J. B. (2012). White matter pathology in Parkinson’s disease: the effect of imaging protocol differences and relevance to executive function. NeuroImage, 62(3), 1675–1684.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37(4), 1083–1090.PubMedCrossRefGoogle Scholar
  57. Rektorova, I., Biundo, R., Marecek, R., Weis, L., Aarsland, D., & Antonini, A. (2014). Grey matter changes in cognitively impaired Parkinson’s disease patients. PloS One, 9(1), e85595.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52(3), 1059–1069.PubMedCrossRefGoogle Scholar
  59. Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., Gur, R. C., & Gur, R. E. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. NeuroImage, 60(1), 623–632.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Skidmore, F., Korenkevych, D., Liu, Y., He, G., Bullmore, E., & Pardalos, P. M. (2011). Connectivity brain networks based on wavelet correlation analysis in Parkinson fMRI data. Neuroscience Letters, 499(1), 47–51.PubMedCrossRefGoogle Scholar
  62. Somerville, L. H., Jones, R. M., Ruberry, E. J., Dyke, J. P., Glover, G., & Casey, B. (2013). The medial prefrontal cortex and the emergence of self-conscious emotion in adolescence. Psychological Science, 24(8), 1554–1562.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Sporns, O. (2011). The non-random brain: efficiency, economy, and complex dynamics. Frontiers in Computational Neuroscience, 5(5), 1–13.Google Scholar
  64. Sporns, O., & Zwi, J. D. (2004). The small world of the cerebral cortex. Neuroinformatics, 2(2), 145–162.PubMedCrossRefGoogle Scholar
  65. Tessitore, A., Esposito, F., Vitale, C., Santangelo, G., Amboni, M., Russo, A., Corbo, D., Cirillo, G., Barone, P., & Tedeschi, G. (2012). Default-mode network connectivity in cognitively unimpaired patients with Parkinson disease. Neurology, 79(23), 2226–2232.PubMedCrossRefGoogle Scholar
  66. Tinaz, S., Lauro, P., Hallett, M., & Horovitz, S. G. (2015). Deficits in task-set maintenance and execution networks in Parkinson’s disease. Brain Structure and Function, 220(1), 1–13.Google Scholar
  67. Vaessen, M., Braakman, H., Heerink, J., Jansen, J., Debeij-van Hall, M., Hofman, P., Aldenkamp, A., & Backes, W. (2013). Abnormal modular organization of functional networks in cognitively impaired children with frontal lobe epilepsy. Cerebral Cortex, 23(8), 1997–2006.PubMedCrossRefGoogle Scholar
  68. Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1), 431–438.PubMedCrossRefGoogle Scholar
  69. van Eimeren, T., Monchi, O., Ballanger, B., & Strafella, A. P. (2009). Dysfunction of the default mode network in Parkinson disease: a functional magnetic resonance imaging study. Archives of Neurology, 66(7), 877–883.PubMedPubMedCentralGoogle Scholar
  70. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a fronto-parietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328–3342.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Wang, J. H., Zuo, X. N., Gohel, S., Milham, M. P., Biswal, B. B., & He, Y. (2011). Graph theoretical analysis of functional brain networks: test-retest evaluation on short-and long-term resting-state functional MRI data. PloS One, 6(7), e21976.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Wu, T., & Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain, 136(3), 696–709.PubMedCrossRefGoogle Scholar
  73. Wu, T., Long, X., Wang, L., Hallett, M., Zang, Y., Li, K., & Chan, P. (2011b). Functional connectivity of cortical motor areas in the resting state in Parkinson’s disease. Human Brain Mapping, 32(9), 1443–1457.PubMedCrossRefGoogle Scholar
  74. Wu, K., Taki, Y., Sato, K., Sassa, Y., Inoue, K., Goto, R., Okada, K., Kawashima, R., He, Y., & Evans, A. C. (2011a). The overlapping community structure of structural brain network in young healthy individuals. PloS One, 6(5), e19608.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Yan, C.-G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Martino, A. D., Li, Q., Zuo, X.-N., Castellanos, F. X., & Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage, 76(1), 183–201.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., & Bullmore, E. T. (2010). Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage, 50(3), 970–983.PubMedCrossRefGoogle Scholar
  77. Zuo, X.-N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., & Milham, M. P. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 1862–1875.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Qing Ma
    • 1
  • Biao Huang
    • 2
  • Jinhui Wang
    • 3
    • 4
  • Carol Seger
    • 1
    • 5
  • Wanqun Yang
    • 2
  • Changhong Li
    • 1
  • Junjing Wang
    • 1
  • Jieying Feng
    • 2
  • Ling Weng
    • 1
  • Wenjie Jiang
    • 1
  • Ruiwang Huang
    • 1
  1. 1.Center for the Study of Applied Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, School of PsychologySouth China Normal UniversityGuangzhouChina
  2. 2.Department of Radiology, Guangdong Academy of Medical SciencesGuangdong General HospitalGuangzhouChina
  3. 3.Center for Cognition and Brain DisordersHangzhou Normal UniversityHangzhouChina
  4. 4.Zhejiang Key Laboratory for Research in Assessment of Cognitive ImpairmentsHangzhouChina
  5. 5.Department of Psychology and Program in Molecular, Cellular, and Integrative NeurosciencesColorado State UniversityFort CollinsUSA

Personalised recommendations