Brain Imaging and Behavior

, Volume 11, Issue 2, pp 417–429 | Cite as

The functional connectivity in the motor loop of human basal ganglia

  • Clara Rodriguez-Sabate
  • Magdalena Sabate
  • Catalina Llanos
  • Ingrid Morales
  • Alberto Sanchez
  • Manuel Rodriguez
Original Research


Basal ganglia interact in a complex way which is still not completely understood. The model generally used to explain basal ganglia interactions is based on experimental data in animals, but its validation in humans has been hampered by methodological restrictions. The time-relationship (partial correlation) of the fluctuations of the blood-oxygen-level-dependent signals recorded in the main basal ganglia was used here (32 healthy volunteers; 18–72 years of age; 16 males and 16 females) to test whether the interaction of the main basal ganglia in humans follows the pattern of functional connectivity in animals. Data showed that most basal ganglia have a functional connectivity which is compatible with that of the established closed-loop model. The strength of the connectivity of some basal ganglia changed with finger motion, suggesting that the functional interactions between basal ganglia are quickly restructured by the motor tasks. The present study with the motor cortico-BG loop centers supports the circling dynamic of the basal ganglia model in humans, showing that motor tasks may change the functional connectivity of these centers.


Cerebral cortex Basal ganglia Functional connectivity Resting state Hand motion 


Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was performed with the approval of the local Institutional Human Studies Committee. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


This study was funded by the Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain. (grant number PI2011/02–2).

Conflict of Interest

Authors declare no conflict of interest.


  1. Afsharpour, S. (1985). Topographical projections of the cerebral cortex to the subthalamic nucleus. The Journal of Comparative Neurology, 236(1), 14–28.PubMedCrossRefGoogle Scholar
  2. Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.PubMedCrossRefGoogle Scholar
  3. Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.PubMedCrossRefGoogle Scholar
  4. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.PubMedCrossRefGoogle Scholar
  5. Arthurs, O. J., & Boniface, S. (2002). How well do we understand the neural origins of the fMRI BOLD signal? Trends in Neurosciences, 25(1), 27–31.PubMedCrossRefGoogle Scholar
  6. Baudrexel, S., Witte, T., Seifried, C., von Wegner, F., Beissner, F., Klein, J. C., et al. (2011). Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson’s disease. NeuroImage, 55(4), 1728–1738.PubMedCrossRefGoogle Scholar
  7. Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., et al. (2009). Sparse but selective and potent synaptic transmission from the Globus pallidus to the subthalamic nucleus. Journal of Neurophysiology, 102(1), 532–545.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brunenberg, E. J., Moeskops, P., Backes, W. H., Pollo, C., Cammoun, L., Vilanova, A., et al. (2012). Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PloS One, 7(6), e39061.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Buckner, R. L., Krienen, F. M., & Yeo, B. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience, 16(7), 832–837.PubMedCrossRefGoogle Scholar
  10. Chastan, N., Westby, G. W., Yelnik, J., Bardinet, E., Do, M. C., Agid, Y., et al. (2009). Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson’s disease. Brain, 132(Pt 1), 172–184.PubMedGoogle Scholar
  11. D’Esposito, M., Deouell, L. Y., & Gazzaley, A. (2003). Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nature Reviews. Neuroscience, 4(11), 863–872.PubMedCrossRefGoogle Scholar
  12. DeLong, M. R. (1971). Activity of pallidal neurons during movement. Journal of Neurophysiology, 34(3), 414–427.PubMedGoogle Scholar
  13. DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.PubMedCrossRefGoogle Scholar
  14. Deniau, J. M., Kitai, S. T., Donoghue, J. P., & Grofova, I. (1982). Neuronal interactions in the substantia nigra pars reticulata through axon collaterals of the projection neurons. An electrophysiological and morphological study. Experimental Brain Research, 47(1), 105–113.PubMedCrossRefGoogle Scholar
  15. Dervan, A. G., Meshul, C. K., Beales, M., McBean, G. J., Moore, C., Totterdell, S., et al. (2004). Astroglial plasticity and glutamate function in a chronic mouse model of Parkinson’s disease. Experimental Neurology, 190(1), 145–156.PubMedCrossRefGoogle Scholar
  16. Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Shehzad, Z., et al. (2008). Functional connectivity of human striatum: a resting state FMRI study. Cerebral Cortex, 18(12), 2735–2747.PubMedCrossRefGoogle Scholar
  17. Evarts, E. V. (1969). Activity of piramidal tract neurons during postural fixation. Journal of Neurophysiology, 32, 375–385.PubMedGoogle Scholar
  18. Fair, D. A., Schlaggar, B. L., Cohen, A. L., Miezin, F. M., Dosenbach, N. U., Wenger, K. K., et al. (2007). A method for using blocked and event-related fMRI data to study "resting state" functional connectivity. NeuroImage, 35(1), 396–405.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fox, M. D., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56(1), 171–184.PubMedCrossRefGoogle Scholar
  21. Fox, P. T., & Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human sujacts. Proceedings of the National Academy of Sciences of the United States of America, 83, 1140–1144.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fox, P. T., Raichle, M. E., Mintun, M. A., & Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science, 241, 462–464.PubMedCrossRefGoogle Scholar
  23. Francois-Brosseau, F. E., Martinu, K., Strafella, A. P., Petrides, M., Simard, F., & Monchi, O. (2009). Basal ganglia and frontal involvement in self-generated and externally-triggered finger movements in the dominant and non-dominant hand. The European Journal of Neuroscience, 29(6), 1277–1286.PubMedCrossRefGoogle Scholar
  24. Galvan, A., Hu, X., Smith, Y., & Wichmann, T. (2010). Localization and function of GABA transporters in the Globus pallidus of parkinsonian monkeys. Experimental Neurology, 223(2), 505–515.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Georgopoulos, A. P., Ashe, J., Smyrnis, N., & Taira, M. (1992). The motor cortex and the coding of force. Science, 256(5064), 1692–1695.PubMedCrossRefGoogle Scholar
  26. Gittis, A. H., Berke, J. D., Bevan, M. D., Chan, C. S., Mallet, N., Morrow, M. M., et al. (2014). New roles for the external Globus pallidus in basal ganglia circuits and behavior. The Journal of Neuroscience, 34(46), 15178–15183.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gopinath, K., Ringe, W., Goyal, A., Carter, K., Dinse, H. R., Haley, R., et al. (2011). Striatal functional connectivity networks are modulated by fMRI resting state conditions. NeuroImage, 54(1), 380–388.PubMedCrossRefGoogle Scholar
  28. Greene, D. J., Laumann, T. O., Dubis, J. W., Ihnen, S. K., Neta, M., Power, J. D., et al. (2014). Developmental changes in the organization of functional connections between the basal ganglia and cerebral cortex. The Journal of Neuroscience, 34(17), 5842–5854.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.PubMedCrossRefGoogle Scholar
  30. Haber, S. N. (2003). The primate basal ganglia: parallel and integrative networks. Journal of Chemical Neuroanatomy, 26(4), 317–330.PubMedCrossRefGoogle Scholar
  31. Hazrati, L. N., Parent, A., Mitchell, S., & Haber, S. N. (1990). Evidence for interconnections between the two segments of the Globus pallidus in primates: a PHA-L anterograde tracing study. Brain Research, 533(1), 171–175.PubMedCrossRefGoogle Scholar
  32. Hoover, J. E., & Strick, P. L. (1993). Multiple output channels in the basal ganglia. Science, 259(5096), 819–821.PubMedCrossRefGoogle Scholar
  33. Huguenard, J. R., & McCormick, D. A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences, 30(7), 350–356.PubMedCrossRefGoogle Scholar
  34. Jo, H. J., Gotts, S. J., Reynolds, R. C., Bandettini, P. A., Martin, A., Cox, R. W., et al. (2013). Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. Journal of Applied Mathematics, 1, 1–9.CrossRefGoogle Scholar
  35. Kalaska, J. F., Cohen, D. A., Hyde, M. L., & Prud’homme, M. (1989). A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. The Journal of Neuroscience, 9(6), 2080–2102.PubMedGoogle Scholar
  36. Kaneda, K., Tachibana, Y., Imanishi, M., Kita, H., Shigemoto, R., Nambu, A., et al. (2005). Down-regulation of metabotropic glutamate receptor 1alpha in Globus pallidus and substantia nigra of parkinsonian monkeys. The European Journal of Neuroscience, 22(12), 3241–3254.PubMedCrossRefGoogle Scholar
  37. Kim, S. G., & Ugurbil, K. (1997). Comparison of blood oxygenation and cerebral blood flow effects in fMRI: estimation of relative oxygen consumption change. Magnetic Resonance in Medicine, 38(1), 59–65.PubMedCrossRefGoogle Scholar
  38. Kitai, S. T., & Deniau, J. M. (1981). Cortical inputs to the subthalamus: intracellular analysis. Brain Research, 214(2), 411–415.PubMedCrossRefGoogle Scholar
  39. Kliem, M. A., Maidment, N. T., Ackerson, L. C., Chen, S., Smith, Y., & Wichmann, T. (2007). Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. Journal of Neurophysiology, 98(3), 1489–1500.PubMedCrossRefGoogle Scholar
  40. Kliem, M. A., Pare, J. F., Khan, Z. U., Wichmann, T., & Smith, Y. (2010). Ultrastructural localization and function of dopamine D1-like receptors in the substantia nigra pars reticulata and the internal segment of the Globus pallidus of parkinsonian monkeys. The European Journal of Neuroscience, 31(5), 836–851.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research. Brain Research Reviews, 29(2–3), 169–195.PubMedCrossRefGoogle Scholar
  42. Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88.PubMedCrossRefGoogle Scholar
  43. Kunzle, H., & Akert, K. (1977). Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. The Journal of Comparative Neurology, 173(1), 147–164.PubMedCrossRefGoogle Scholar
  44. Lafreniere-Roula, M., Kim, E., Hutchison, W. D., Lozano, A. M., Hodaie, M., & Dostrovsky, J. O. (2010). High-frequency microstimulation in human Globus pallidus and substantia nigra. Experimental Brain Research, 205(2), 251–261.PubMedCrossRefGoogle Scholar
  45. Lehericy, S., Benali, H., Van de Moortele, P. F., Pelegrini-Issac, M., Waechter, T., Ugurbil, K., et al. (2005). Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12566–12571.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lenglet, C., Abosch, A., Yacoub, E., De Martino, F., Sapiro, G., & Harel, N. (2012). Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7 T MRI. PloS One, 7(1), e29153.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Logothetis, N. K., & Wandell, B. A. (2004). Interpreting the BOLD signal. Annual Review of Physiology, 66, 735–769.PubMedCrossRefGoogle Scholar
  48. Mailly, P., Charpier, S., Menetrey, A., & Deniau, J. M. (2003). Three-dimensional organization of the recurrent axon collateral network of the substantia nigra pars reticulata neurons in the rat. The Journal of Neuroscience, 23(12), 5247–5257.PubMedGoogle Scholar
  49. Marchand, W. R., Lee, J. N., Suchy, Y., Garn, C., Johnson, S., Wood, N., et al. (2011). Age-related changes of the functional architecture of the cortico-basal ganglia circuitry during motor task execution. NeuroImage, 55(1), 194–203.PubMedCrossRefGoogle Scholar
  50. Mastro, K. J., Bouchard, R. S., Holt, H. A., & Gittis, A. H. (2014). Transgenic mouse lines subdivide external segment of the Globus pallidus (GPe) neurons and reveal distinct GPe output pathways. The Journal of Neuroscience, 34(6), 2087–2099.PubMedPubMedCentralCrossRefGoogle Scholar
  51. McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V., & Redgrave, P. (2005). Subcortical loops through the basal ganglia. Trends in Neurosciences, 28(8), 401–407.PubMedCrossRefGoogle Scholar
  52. Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.PubMedCrossRefGoogle Scholar
  53. Mulder, M. J., Boekel, W., Ratcliff, R., & Forstmann, B. U. (2013). Cortico-subthalamic connection predicts individual differences in value-driven choice bias. Brain Structure & FunctionGoogle Scholar
  54. Nakanishi, H., Kita, H., & Kitai, S. T. (1991). Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: response to subthalamic stimulation. Brain Research, 549(2), 285–291.PubMedCrossRefGoogle Scholar
  55. Nambu, A. (2011). Somatotopic organization of the primate basal ganglia. Frontiers in Neuroanatomy, 5, 26.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Nambu, A., & Llinas, R. (1994). Electrophysiology of Globus pallidus neurons in vitro. Journal of Neurophysiology, 72(3), 1127–1139.PubMedGoogle Scholar
  57. Obeso, J. A., Marin, C., Rodriguez-Oroz, C., Blesa, J., Benitez-Temino, B., Mena-Segovia, J., et al. (2008a). The basal ganglia in Parkinson’s disease: current concepts and unexplained observations. Ann Neurol, 64(Suppl 2), S30–S46.PubMedGoogle Scholar
  58. Obeso, J. A., Rodriguez-Oroz, M. C., Benitez-Temino, B., Blesa, F. J., Guridi, J., Marin, C., et al. (2008b). Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord, 23(Suppl 3), S548–S559.PubMedCrossRefGoogle Scholar
  59. Obeso, J. A., Rodriguez-Oroz, M. C., Lanciego, J. L., & Rodriguez Diaz, M. (2004). How does Parkinson’s disease begin? The role of compensatory mechanisms. Trends in Neurosciences, 27(3), 125–127 author reply 127-128.PubMedCrossRefGoogle Scholar
  60. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.PubMedCrossRefGoogle Scholar
  61. Parent, A. (1990). Extrinsic connections of the basal ganglia. Trends in Neurosciences, 13(7), 254–258.PubMedCrossRefGoogle Scholar
  62. Parent, A., & Hazrati, L. N. (1995a). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research. Brain Research Reviews, 20(1), 91–127.PubMedCrossRefGoogle Scholar
  63. Parent, A., & Hazrati, L. N. (1995b). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Research. Brain Research Reviews, 20(1), 128–154.PubMedCrossRefGoogle Scholar
  64. Parent, M., Levesque, M., & Parent, A. (1999). The pallidofugal projection system in primates: evidence for neurons branching ipsilaterally and contralaterally to the thalamus and brainstem. Journal of Chemical Neuroanatomy, 16(3), 153–165.PubMedCrossRefGoogle Scholar
  65. Penney Jr., J. B., & Young, A. B. (1986). Striatal inhomogeneities and basal ganglia function. Movement Disorders, 1(1), 3–15.PubMedCrossRefGoogle Scholar
  66. Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex, 16(10), 1508–1521.PubMedCrossRefGoogle Scholar
  67. Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320–341.PubMedCrossRefGoogle Scholar
  68. Puce, A., Constable, R. T., Luby, M. L., McCarthy, G., Nobre, A. C., Spencer, D. D., et al. (1995). Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. Journal of Neurosurgery, 83(2), 262–270.PubMedCrossRefGoogle Scholar
  69. Raichle, M. E. (1998). Behind the scenes of functional brain imaging: a historical and physiological perspective. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 765–772.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.PubMedCrossRefGoogle Scholar
  71. Redgrave, P., Marrow, L., & Dean, P. (1992). Topographical organization of the nigrotectal projection in rat: evidence for segregated channels. Neuroscience, 50(3), 571–595.PubMedCrossRefGoogle Scholar
  72. Rinvik, E., & Ottersen, O. P. (1993). Terminals of subthalamonigral fibres are enriched with glutamate-like immunoreactivity: an electron microscopic, immunogold analysis in the cat. Journal of Chemical Neuroanatomy, 6(1), 19–30.PubMedCrossRefGoogle Scholar
  73. Robinson, S., Basso, G., Soldati, N., Sailer, U., Jovicich, J., Bruzzone, L., et al. (2009). A resting state network in the motor control circuit of the basal ganglia. BMC Neuroscience, 10, 137.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Rodriguez-Oroz, M. C., Lopez-Azcarate, J., Garcia-Garcia, D., Alegre, M., Toledo, J., Valencia, M., et al. (2013). Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson’s disease. Brain, 134(Pt 1), 36–49.Google Scholar
  75. Rodriguez-Sabate, C., Llanos, C., Morales, I., Garcia-Alvarez, R., Sabate, M., & Rodriguez, M. (2014). The functional connectivity of intralaminar thalamic nuclei in the human basal ganglia. Human Brain MappingGoogle Scholar
  76. Rodriguez-Sabate, C., Llanos, C., Morales, I., Garcia-Alvarez, R., Sabate, M., & Rodriguez, M. (2015). The functional connectivity of intralaminar thalamic nuclei in the human basal ganglia. Human Brain Mapping, 36(4), 1335–1347.PubMedCrossRefGoogle Scholar
  77. Rodriguez, M., Muniz, R., Gonzalez, B., & Sabate, M. (2004). Hand movement distribution in the motor cortex: the influence of a concurrent task and motor imagery. NeuroImage, 22(4), 1480–1491.PubMedCrossRefGoogle Scholar
  78. Rouzaire-Dubois, B., & Scarnati, E. (1985). Bilateral corticosubthalamic nucleus projections: an electrophysiological study in rats with chronic cerebral lesions. Neuroscience, 15(1), 69–79.PubMedCrossRefGoogle Scholar
  79. Sabate, M., Llanos, C., Enriquez, E., Gonzalez, B., & Rodriguez, M. (2011). Fast modulation of alpha activity during visual processing and motor control. Neuroscience, 189, 236–249.PubMedCrossRefGoogle Scholar
  80. Salamon, G., Martini, P., Ternier, F., Vibert, E., Murayama, N., & Khadr, E. (1991). Topographical study of supratentorial brain tumors. Journal of Neuroradiology, 18(2), 123–140.Google Scholar
  81. Sato, F., Lavallee, P., Levesque, M., & Parent, A. (2000). Single-axon tracing study of neurons of the external segment of the Globus pallidus in primate. The Journal of Comparative Neurology, 417(1), 17–31.PubMedCrossRefGoogle Scholar
  82. Selemon, L. D., & Goldman-Rakic, P. S. (1985). Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. The Journal of Neuroscience, 5(3), 776–794.PubMedGoogle Scholar
  83. Steriade, M. (2001). Impact of network activities on neuronal properties in corticothalamic systems. Journal of Neurophysiology, 86(1), 1–39.PubMedGoogle Scholar
  84. Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research, 320(1), 1–63.PubMedCrossRefGoogle Scholar
  85. Talairach, J., & Tournoux, P. (1993). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers, Stuttgart.Google Scholar
  86. Tanibuchi, I., Kitano, H., & Jinnai, K. (2009). Substantia nigra output to prefrontal cortex via thalamus in monkeys. I. Electrophysiological identification of thalamic relay neurons. Journal of Neurophysiology, 102(5), 2933–2945.PubMedCrossRefGoogle Scholar
  87. Taniwaki, T., Okayama, A., Yoshiura, T., Togao, O., Nakamura, Y., Yamasaki, T., et al. (2006). Functional network of the basal ganglia and cerebellar motor loops in vivo: different activation patterns between self-initiated and externally triggered movements. NeuroImage, 31(2), 745–753.PubMedCrossRefGoogle Scholar
  88. Treserras, S., Boulanouar, K., Conchou, F., Simonetta-Moreau, M., Berry, I., Celsis, P., et al. (2009). Transition from rest to movement: brain correlates revealed by functional connectivity. NeuroImage, 48(1), 207–216.PubMedCrossRefGoogle Scholar
  89. Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of Neurophysiology, 103(1), 297–321.PubMedCrossRefGoogle Scholar
  90. Walker, R. H., Arbuthnott, G. W., & Wright, A. K. (1989). Electrophysiological and anatomical observations concerning the pallidostriatal pathway in the rat. Experimental Brain Research, 74(2), 303–310.PubMedCrossRefGoogle Scholar
  91. Wichmann, T., Bergman, H., Starr, P. A., Subramanian, T., Watts, R. L., & DeLong, M. R. (1999). Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Experimental Brain Research, 125(4), 397–409.PubMedCrossRefGoogle Scholar
  92. Windels, F., Bruet, N., Poupard, A., Urbain, N., Chouvet, G., Feuerstein, C., et al. (2000). Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and Globus pallidus in the normal rat. The European Journal of Neuroscience, 12(11), 4141–4146.PubMedCrossRefGoogle Scholar
  93. Wu, T., Wang, L., Hallett, M., Chen, Y., Li, K., & Chan, P. (2011). Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. NeuroImage, 55(1), 204–215.PubMedCrossRefGoogle Scholar
  94. Yousry, T. A., Schmid, U. D., Alkadhi, H., Schmidt, D., Peraud, A., Buettner, A., et al. (1997). Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain, 120(Pt 1), 141–157.PubMedCrossRefGoogle Scholar
  95. Ystad, M., Hodneland, E., Adolfsdottir, S., Haasz, J., Lundervold, A. J., Eichele, T., et al. (2011). Cortico-striatal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study. NeuroImage, 55(1), 24–31.PubMedCrossRefGoogle Scholar
  96. Zhang, D., Snyder, A. Z., Fox, M. D., Sansbury, M. W., Shimony, J. S., & Raichle, M. E. (2008). Intrinsic functional relations between human cerebral cortex and thalamus. Journal of Neurophysiology, 100(4), 1740–1748.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Zhang, D., Snyder, A. Z., Shimony, J. S., Fox, M. D., & Raichle, M. E. (2010). Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cerebral Cortex, 20(5), 1187–1194.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Clara Rodriguez-Sabate
    • 1
    • 3
  • Magdalena Sabate
    • 2
    • 3
  • Catalina Llanos
    • 2
  • Ingrid Morales
    • 1
    • 3
  • Alberto Sanchez
    • 1
    • 3
  • Manuel Rodriguez
    • 1
    • 3
  1. 1.Laboratory of Neurobiology and Experimental Neurology, Department of Physiology; Faculty of MedicineUniversity of La LagunaTenerifeSpain
  2. 2.Department of Pharmacology and Physical Medicine, Faculty of MedicineUniversity of La LagunaTenerifeSpain
  3. 3.Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain

Personalised recommendations