Skip to main content

Advertisement

Log in

Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury

  • mTBI SPECIAL ISSUE
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Several reports show that traumatic brain injury (TBI) results in abnormalities in the coordinated activation among brain regions. Because most previous studies examined moderate/severe TBI, the extensiveness of functional connectivity abnormalities and their relationship to postconcussive complaints or white matter microstructural damage are unclear in mild TBI. This study characterized widespread injury effects on multiple integrated neural networks typically observed during a task-unconstrained “resting state” in mild TBI patients. Whole brain functional connectivity for twelve separate networks was identified using independent component analysis (ICA) of fMRI data collected from thirty mild TBI patients mostly free of macroscopic intracerebral injury and thirty demographically-matched healthy control participants. Voxelwise group comparisons found abnormal mild TBI functional connectivity in every brain network identified by ICA, including visual processing, motor, limbic, and numerous circuits believed to underlie executive cognition. Abnormalities not only included functional connectivity deficits, but also enhancements possibly reflecting compensatory neural processes. Postconcussive symptom severity was linked to abnormal regional connectivity within nearly every brain network identified, particularly anterior cingulate. A recently developed multivariate technique that identifies links between whole brain profiles of functional and anatomical connectivity identified several novel mild TBI abnormalities, and represents a potentially important new tool in the study of the complex neurobiological sequelae of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves, W., Macciocchi, S. M., & Barth, J. T. (1993). Postconcussive symptoms after uncomplicated mild head injury. The Journal of Head Trauma Rehabilitation, 8, 48–59.

    Article  Google Scholar 

  • Annegers, J. F., Grabow, J. D., & Kurland, L. T. (1980). The incidence, causes, and secular trends in head injury in Olmsted County, Minnesota, 1965–1974. Neurology, 30, 912–919.

    Article  PubMed  CAS  Google Scholar 

  • Arfanakis, K., Haughton, V. M., Carew, J. D., Rogers, B. P., Dempsey, R. J., & Meyerand, M. E. (2002). Diffusion tensor MR imaging in diffuse axonal injury. AJNR. American Journal of Neuroradiology, 23(5), 794–802.

    PubMed  Google Scholar 

  • Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., et al. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. NeuroImage, 53(1), 247–256. doi:10.1016/j.neuroimage.2010.05.067.

    Article  PubMed  Google Scholar 

  • Atlas, S. (2001). Imaging of the brain and spine (3rd ed.). Hagerstown: Lippincott Williams & Williams.

    Google Scholar 

  • Babiloni, C., Babiloni, F., Carducci, F., Cincotti, F., Vecchio, F., Cola, B., et al. (2004). Functional frontoparietal connectivity during short-term memory as revealed by high-resolution EEG coherence analysis. Behavioral Neuroscience, 118(4), 687–697.

    Article  PubMed  Google Scholar 

  • Bazarian, J. J., Zhong, J., Blyth, B., Zhu, T., Kavcic, V., & Peterson, D. (2007). Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study. Journal of Neurotrauma, 24(9), 1447–1459. doi:10.1089/neu.2007.0241.

    Article  PubMed  Google Scholar 

  • Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 1001–1013. doi:10.1098/rstb.2005.1634.

    Article  PubMed  Google Scholar 

  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.

    Article  PubMed  CAS  Google Scholar 

  • Bigler, E. D. (2001a). Neuropsychological testing defines the neurobehavioral significance of neuroimaging-identified abnormalities. Archives of Clinical Neuropsychology, 16(3), 227–236.

    PubMed  CAS  Google Scholar 

  • Bigler, E. D. (2001b). Quantitative magnetic resonance imaging in traumatic brain injury. The Journal of Head Trauma Rehabilitation, 16(2), 117–134.

    Article  PubMed  CAS  Google Scholar 

  • Bigler, E. D. (2005). Structural imaging. In J. M. Silver, T. W. McAllister, & S. C. Yudofsky (Eds.), Textbook of traumatic brain injury. Washington, DC: American Psychiatric.

    Google Scholar 

  • Binder, L. M. (1997). A review of mild head trauma. Part II: clinical implications. Journal of Clinical and Experimental Neuropsychology, 19(3), 432–457.

    Article  PubMed  CAS  Google Scholar 

  • Binder, L. M., Rohling, M. L., & Larrabee, G. J. (1997). A review of mild head trauma. Part I: meta-analytic review of neuropsychological studies. Journal of Clinical and Experimental Neuropsychology, 19(3), 421–431.

    Article  PubMed  CAS  Google Scholar 

  • Bohnen, N., Jolles, J., & Verhey, F. R. (1993). Persistent neuropsychological deficits in cervical whiplash patients without direct headstrike. Acta Neurologica Belgica, 93(1), 23–31.

    PubMed  CAS  Google Scholar 

  • Botvinick, M. M. (2007). Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 356–366.

    Article  Google Scholar 

  • Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience and Biobehavioral Reviews, 33(3), 279–296. doi:10.1016/j.neubiorev.2008.09.002.

    Article  PubMed  Google Scholar 

  • Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151.

    Article  PubMed  CAS  Google Scholar 

  • Calhoun, V. D., Kiehl, K. A., & Pearlson, G. D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828–838. doi:10.1002/hbm.20581.

    Article  PubMed  Google Scholar 

  • Carter, C. S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 367–379.

    Article  Google Scholar 

  • Castellanos, N. P., Paul, N., Ordonez, V. E., Demuynck, O., Bajo, R., Campo, P., et al. (2010). Reorganization of functional connectivity as a correlate of cognitive recovery in acquired brain injury. Brain, 133(Pt 8), 2365–2381. doi:10.1093/brain/awq174.

    Article  PubMed  Google Scholar 

  • Cauda, F., D’Agata, F., Sacco, K., Duca, S., Cocito, D., Paolasso, I., et al. (2009). Altered resting state attentional networks in diabetic neuropathic pain. Journal of Neurology, Neurosurgery, and Psychiatry, 81(7), 806–811. doi:10.1136/jnnp.2009.188631.

    Article  PubMed  Google Scholar 

  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, N.J.: L. Erlbaum Associates.

  • Cordes, D., Haughton, V. M., Arfanakis, K., Wendt, G. J., Turski, P. A., Moritz, C. H., et al. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR. American Journal of Neuroradiology, 21(9), 1636–1644.

    PubMed  CAS  Google Scholar 

  • D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 761–772. doi:10.1098/rstb.2007.2086.

    Article  PubMed  Google Scholar 

  • Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853. doi:10.1073/pnas.0601417103.

    Article  PubMed  CAS  Google Scholar 

  • De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., & Smith, S. M. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage, 29(4), 1359–1367. doi:10.1016/j.neuroimage.2005.08.035.

    Article  PubMed  Google Scholar 

  • Deb, S., Lyons, I., & Koutzoukis, C. (1998). Neuropsychiatric sequelae one year after a minor head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 65(6), 899–902.

    Article  PubMed  CAS  Google Scholar 

  • Deco, G., & Corbetta, M. (2011). The dynamical balance of the brain at rest. The Neuroscientist, 17(1), 107–123. doi:10.1177/1073858409354384.

    Article  PubMed  Google Scholar 

  • Deco, G., Jirsa, V. K., & McIntosh, A. R. (2010). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature Reviews Neuroscience, 12(1), 43–56. doi:10.1038/nrn2961.

    Article  CAS  Google Scholar 

  • Dikmen, S., Machamer, J., Miller, B., Doctor, J., & Temkin, N. (2001a). Functional status examination: a new instrument for assessing outcome in traumatic brain injury. Journal of Neurotrauma, 18(2), 127–140.

    Article  CAS  Google Scholar 

  • Dikmen, S., Machamer, J., & Temkin, N. (2001b). Mild head injury: facts and artifacts. Journal of Clinical and Experimental Neuropsychology, 23(6), 729–738.

    Article  CAS  Google Scholar 

  • Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073–11078. doi:10.1073/pnas.0704320104.

    Article  PubMed  CAS  Google Scholar 

  • Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99–105. doi:10.1016/j.tics.2008.01.001.

    Article  PubMed  Google Scholar 

  • Eickhoff, S. B., & Grefkes, C. (2011). Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clinical EEG and Neuroscience, 42(2), 107–121.

    Article  PubMed  Google Scholar 

  • Eisenberg, H. M., & Levin, H. S. (1989). Computed tomography and magnetic resonance imaging in mild to moderate head injury. In H. S. Levin, H. M. Eisenberg, & A. Benton (Eds.), Mild head injury. New York: Oxford University Press.

    Google Scholar 

  • Erhardt, E. B., Rachakonda, S., Bedrick, E. J., Allen, E. A., Adali, T., & Calhoun, V. D. (2010). Comparison of multi-subject ICA methods for analysis of fMRI data. Human Brain Mapping. doi:10.1002/hbm.21170.

  • Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85–93. doi:10.1016/j.tics.2010.11.004.

    Article  PubMed  Google Scholar 

  • Ewing-Cobbs, L., Prasad, M. R., Swank, P., Kramer, L., Cox, C. S., Jr., Fletcher, J. M., et al. (2008). Arrested development and disrupted callosal microstructure following pediatric traumatic brain injury: relation to neurobehavioral outcomes. NeuroImage, 42(4), 1305–1315. doi:10.1016/j.neuroimage.2008.06.031.

    Article  PubMed  Google Scholar 

  • First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (2002). Structured Clinical Interview for the DSM-IV-TR Axis I Disorders, Research Version, Patient Edition. (SCID-I/P) New York: Biometrics Research, New York State Psychiatric Institute.

  • Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26(1), 15–29.

    Article  PubMed  Google Scholar 

  • Freire, L., Roche, A., & Mangin, J. F. (2002). What is the best similarity measure for motion correction in fMRI time series? IEEE Transactions on Medical Imaging, 21(5), 470–484.

    Article  PubMed  CAS  Google Scholar 

  • Frencham, K. A., Fox, A. M., & Maybery, M. T. (2005). Neuropsychological studies of mild traumatic brain injury: a meta-analytic review of research since 1995. Journal of Clinical and Experimental Neuropsychology, 27(3), 334–351.

    Article  PubMed  Google Scholar 

  • Friston, K. (2002). Functional integration and inference in the brain. Progress in Neurobiology, 68(2), 113–143.

    Article  PubMed  Google Scholar 

  • Galloway, N. R., Tong, K. A., Ashwal, S., Oyoyo, U., & Obenaus, A. (2008). Diffusion-weighted imaging improves outcome prediction in pediatric traumatic brain injury. Journal of Neurotrauma, 25(10), 1153–1162. doi:10.1089/neu.2007.0494.

    Article  PubMed  Google Scholar 

  • Gazzaley, A., Rissman, J., & Desposito, M. (2004). Functional connectivity during working memory maintenance. Cognitive, Affective, & Behavioral Neuroscience, 4(4), 580–599.

    Article  Google Scholar 

  • Gean, A. D. (1984). Imaging of head trauma. New York: Raven.

    Google Scholar 

  • Gentilini, M., Nichelli, P., & Schoenhuber, R. (1989). Assessment of attention in mild head injury. In J. Levin, J. Eisenberg, & A. Benton (Eds.), Mild head injury. New York: Oxford University Press.

    Google Scholar 

  • Glahn, D. C., Winkler, A. M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M. A., et al. (2010). Genetic control over the resting brain. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 1223–1228. doi:10.1073/pnas.0909969107.

    Article  PubMed  CAS  Google Scholar 

  • Gouvier, W. D., Cubic, B., Jones, G., Brantley, P., & Cutlip, Q. (1992). Postconcussion symptoms and daily stress in normal and head-injured college populations. Archives of Clinical Neuropsychology, 7(3), 193–211.

    PubMed  CAS  Google Scholar 

  • Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 24(4), 424–430.

    Article  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.

    Article  PubMed  CAS  Google Scholar 

  • Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78. doi:10.1093/cercor/bhn059.

    Article  PubMed  Google Scholar 

  • Griffin, S. L., Mindt, M. R., Rankin, E. J., Ritchie, A. J., & Scott, J. G. (2002). Estimating premorbid intelligence: comparison of traditional and contemporary methods across the intelligence continuum. Archives of Clinical Neuropsychology, 17(5), 497–507.

    PubMed  Google Scholar 

  • Gronwall, D. (1989). Cumulative and persisting effects of concussion on attention and cognition. In J. Levin, J. Eisenberg, & A. Benton (Eds.), Mild head injury. New York: Oxford University Press.

    Google Scholar 

  • Hillary, F. G., Medaglia, J. D., Gates, K., Molenaar, P. C., Slocomb, J., Peechatka, A., et al. (2011a). Examining working memory task acquisition in a disrupted neural network. Brain, 134(Pt 5), 1555–1570. doi:10.1093/brain/awr043.

    Article  Google Scholar 

  • Hillary, F. G., Slocomb, J., Hills, E. C., Fitzpatrick, N. M., Medaglia, J. D., Wang, J., et al. (2011b). Changes in resting connectivity during recovery from severe traumatic brain injury. International Journal of Psychophysiology. doi:10.1016/j.ijpsycho.2011.03.011.

  • Hofman, P. A., Stapert, S. Z., van Kroonenburgh, M. J., Jolles, J., de Kruijk, J., & Wilmink, J. T. (2001). MR imaging, single-photon emission CT, and neurocognitive performance after mild traumatic brain injury. AJNR. American Journal of Neuroradiology, 22(3), 441–449.

    PubMed  CAS  Google Scholar 

  • Hugenholtz, H., Stuss, D. T., Stethem, L. L., & Richard, M. T. (1988). How long does it take to recover from a mild concussion? Neurosurgery, 22(5), 853–858.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, D. G., Jackson, A., Mason, D. L., Berry, E., Hollis, S., & Yates, D. W. (2004). Abnormalities on magnetic resonance imaging seen acutely following mild traumatic brain injury: correlation with neuropsychological tests and delayed recovery. Neuroradiology, 46(7), 550–558.

    Article  PubMed  Google Scholar 

  • Huisman, T. A., Schwamm, L. H., Schaefer, P. W., Koroshetz, W. J., Shetty-Alva, N., Ozsunar, Y., et al. (2004). Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR. American Journal of Neuroradiology, 25(3), 370–376.

    PubMed  Google Scholar 

  • Ingebrigtsen, T., Waterloo, K., & Marup-Jensen, S. (1998). Quantification of post-concussion symptoms 3 months after mild head injury in 100 consecutive patients. Journal of Neurology, 245, 609–612.

    Article  PubMed  CAS  Google Scholar 

  • Inglese, M., Makani, S., Johnson, G., Cohen, B. A., Silver, J. A., Gonen, O., et al. (2005). Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. Journal of Neurosurgery, 103(2), 298–303.

    Article  PubMed  Google Scholar 

  • Jenkins, A., Teasdale, G., Hadley, M. D., Macpherson, P., & Rowan, J. O. (1986). Brain lesions detected by magnetic resonance imaging in mild and severe head injuries. Lancet, 2(8504), 445–446.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. K., Symms, M. R., Cercignani, M., & Howard, R. J. (2005). The effect of filter size on VBM analyses of DT-MRI data. NeuroImage, 26(2), 546–554. doi:10.1016/j.neuroimage.2005.02.013.

    Article  PubMed  Google Scholar 

  • Kasahara, M., Menon, D. K., Salmond, C. H., Outtrim, J. G., Taylor Tavares, J. V., Carpenter, T. A., et al. (2010). Altered functional connectivity in the motor network after traumatic brain injury. Neurology, 75(2), 168–176. doi:10.1212/WNL.0b013e3181e7ca58.

    Article  PubMed  CAS  Google Scholar 

  • Kasahara, M., Menon, D. K., Salmond, C. H., Outtrim, J. G., Tavares, J. V., Carpenter, T. A., et al. (2011). Traumatic brain injury alters the functional brain network mediating working memory. Brain Injury, 25(12), 1170–1187. doi:10.3109/02699052.2011.608210.

    Article  PubMed  Google Scholar 

  • Kay, T., Harrington, D., Adams, R., Anderson, T., Berrol, S., Cicerone, K., et al. (1993). Definition of mild traumatic brain injury. The Journal of Head Trauma Rehabilitation, 8, 86–87.

    Article  Google Scholar 

  • Kiviniemi, V., Starck, T., Remes, J., Long, X., Nikkinen, J., Haapea, M., et al. (2009). Functional segmentation of the brain cortex using high model order group PICA. Human Brain Mapping, 30(12), 3865–3886. doi:10.1002/hbm.20813.

    Article  PubMed  Google Scholar 

  • Kochanek, P. M., Berger, R. P., Bayir, H., Wagner, A. K., Jenkins, L. W., & Clark, R. S. (2008). Biomarkers of primary and evolving damage in traumatic and ischemic brain injury: diagnosis, prognosis, probing mechanisms, and therapeutic decision making. Current Opinion in Critical Care, 14(2), 135–141. doi:10.1097/MCC.0b013e3282f57564.

    Article  PubMed  Google Scholar 

  • Kraus, J. F., & Nourjah, P. (1988). The epidemiology of mild, uncomplicated brain injury. The Journal of Trauma, 28(12), 1637–1643.

    Article  PubMed  CAS  Google Scholar 

  • Kraus, M. F., Susmaras, T., Caughlin, B. P., Walker, C. J., Sweeney, J. A., & Little, D. M. (2007). White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 130(Pt 10), 2508–2519. doi:10.1093/brain/awm216.

    Article  PubMed  Google Scholar 

  • Kumar, S., Rao, S. L., Chandramouli, B. A., & Pillai, S. V. (2009). Reduction of functional brain connectivity in mild traumatic brain injury during working memory. Journal of Neurotrauma, 26(5), 665–675. doi:10.1089/neu.2008-0644.

    Article  PubMed  Google Scholar 

  • Laird, A. R., Eickhoff, S. B., Li, K., Robin, D. A., Glahn, D. C., & Fox, P. T. (2009). Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. Journal of Neuroscience, 29(46), 14496–14505. doi:10.1523/JNEUROSCI.4004-09.2009.

    Article  PubMed  CAS  Google Scholar 

  • Laird, A. R., Fox, P. M., Eickhoff, S. B., Turner, J. A., Ray, K. L., McKay, D. R., et al. (2011). Behavioral interpretations of intrinsic connectivity networks. Journal of Cognitive Neuroscience. doi:10.1162/jocn_a_00077.

  • Lamm, C., Decety, J., & Singer, T. (2010). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54(3), 2492–2502. doi:10.1016/j.neuroimage.2010.10.014.

    Article  PubMed  Google Scholar 

  • Lee, H., Wintermark, M., Gean, A. D., Ghajar, J., Manley, G. T., & Mukherjee, P. (2008). Focal lesions in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3T MRI. Journal of Neurotrauma, 25(9), 1049–1056. doi:10.1089/neu.2008.0566.

    Article  PubMed  Google Scholar 

  • Levin, H. S., Amparo, E., Eisenberg, H. M., Williams, D. H., High, W. M., Jr., McArdle, C. B., et al. (1987a). Magnetic resonance imaging and computerized tomography in relation to the neurobehavioral sequelae of mild and moderate head injuries. Journal of Neurosurgery, 66(5), 706–713.

    Article  CAS  Google Scholar 

  • Levin, H. S., Mattis, S., Ruff, R. M., Eisenberg, H. M., Marshall, L. F., Tabaddor, K., et al. (1987b). Neurobehavioral outcome following minor head injury: a three-center study. Journal of Neurosurgery, 66(2), 234–243.

    Article  CAS  Google Scholar 

  • Levin, H. S., Wilde, E. A., Chu, Z., Yallampalli, R., Hanten, G. R., Li, X., et al. (2008). Diffusion tensor imaging in relation to cognitive and functional outcome of traumatic brain injury in children. [Research Support, N.I.H., Extramural]. The Journal of Head Trauma Rehabilitation, 23(4), 197–208.

    Article  PubMed  Google Scholar 

  • Li, Y., Adali, T., & Calhoun, V. D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Human Brain Mapping, 28(11), 1251–1266.

    Article  PubMed  Google Scholar 

  • Linden, D. E. (2007). The working memory networks of the human brain. The Neuroscientist, 13(3), 257–267. doi:10.1177/1073858406298480.

    Article  PubMed  Google Scholar 

  • Lipton, M. L., Gellella, E., Lo, C., Gold, T., Ardekani, B. A., Shifteh, K., et al. (2008). Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: a voxel-wise analysis of diffusion tensor imaging. Journal of Neurotrauma, 25(11), 1335–1342. doi:10.1089/neu.2008.0547.

    Article  PubMed  Google Scholar 

  • Ma, N., Liu, Y., Li, N., Wang, C. X., Zhang, H., Jiang, X. F., et al. (2009). Addiction related alteration in resting-state brain connectivity. NeuroImage, 49(1), 738–744. doi:10.1016/j.neuroimage.2009.08.037.

    Article  PubMed  Google Scholar 

  • Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 1825–1835. doi:10.1002/hbm.21151.

    Article  PubMed  Google Scholar 

  • McCrea, M., Kelly, J. P., Randolph, C., Cisler, R., & Berger, L. (2002). Immediate neurocognitive effects of concussion. Neurosurgery, 50(5), 1032–1040. discussion 1040–1032.

    PubMed  Google Scholar 

  • McCullagh, S., Oucherlony, D., Protzner, A., Blair, N., & Feinstein, A. (2001). Prediction of neuropsychiatric outcome following mild trauma brain injury: an examination of the Glasgow Coma Scale. Brain Injury, 15(6), 489–497.

    Article  PubMed  CAS  Google Scholar 

  • McMillan, T. M., & Glucksman, E. E. (1987). The neuropsychology of moderate head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 50(4), 393–397.

    Article  PubMed  CAS  Google Scholar 

  • Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure & Function, 214(5–6), 655–667. doi:10.1007/s00429-010-0262-0.

    Article  Google Scholar 

  • Miles, L., Grossman, R. I., Johnson, G., Babb, J. S., Diller, L., & Inglese, M. (2008). Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Injury, 22(2), 115–122. doi:10.1080/02699050801888816.

    Article  PubMed  Google Scholar 

  • Mittl, R. L., Grossman, R. I., Hiehle, J. F., Hurst, R. W., Kauder, D. R., Gennarelli, T. A., et al. (1994). Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. AJNR. American Journal of Neuroradiology, 15(8), 1583–1589.

    PubMed  CAS  Google Scholar 

  • Nakamura, T., Hillary, F. G., & Biswal, B. B. (2009). Resting network plasticity following brain injury. PLoS One, 4(12), e8220. doi:10.1371/journal.pone.0008220.

    Article  PubMed  CAS  Google Scholar 

  • Niogi, S. N., Mukherjee, P., Ghajar, J., Johnson, C., Kolster, R. A., Sarkar, R., et al. (2008a). Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. [Research Support, Non-U.S. Gov’t]. AJNR. American Journal of Neuroradiology, 29(5), 967–973.

    Article  PubMed  CAS  Google Scholar 

  • Niogi, S. N., Mukherjee, P., Ghajar, J., Johnson, C. E., Kolster, R., Lee, H., et al. (2008b). Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Brain, 131(Pt 12), 3209–3221.

    Article  PubMed  Google Scholar 

  • Orrison, W. W. (2000). Neuroimaging. Philadelphia: WB Saunders.

    Google Scholar 

  • Ploner, M., Lee, M. C., Wiech, K., Bingel, U., & Tracey, I. (2010). Flexible cerebral connectivity patterns subserve contextual modulations of pain. Cerebral Cortex, 21(3), 719–726. doi:10.1093/cercor/bhq146.

    Article  PubMed  Google Scholar 

  • Posner, M. I., Rothbart, M. K., Sheese, B. E., & Tang, Y. (2007). The anterior cingulate gyrus and the mechanism of self-regulation. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 391–395.

    Article  Google Scholar 

  • Ptak, T., Sheridan, R. L., Rhea, J. T., Gervasini, A. A., Yun, J. H., Curran, M. A., et al. (2003). Cerebral fractional anisotropy score in trauma patients: a new indicator of white matter injury after trauma. AJR. American Journal of Roentgenology, 181(5), 1401–1407.

    PubMed  Google Scholar 

  • Ray, S. K., Dixon, C. E., & Banik, N. L. (2002). Molecular mechanisms in the pathogenesis of traumatic brain injury. Histology and Histopathology, 17(4), 1137–1152.

    PubMed  CAS  Google Scholar 

  • Rimel, R. W. (1981). A prospective study of patients with central nervous system trauma. Journal of Neurosurgical Nursing, 13(3), 132–141.

    Article  PubMed  CAS  Google Scholar 

  • Rimel, R. W., Giordani, B., Barth, J. T., Boll, T. J., & Jane, J. A. (1981). Disability caused by minor head injury. Neurosurgery, 9(3), 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Roth, J. K., & Courtney, S. M. (2007). Neural system for updating object working memory from different sources: sensory stimuli or long-term memory. NeuroImage, 38(3), 617–630.

    Article  PubMed  Google Scholar 

  • Rudebeck, P. H., Bannerman, D. M., & Rushworth, M. F. (2008). The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cognitive, Affective, & Behavioral Neuroscience, 8(4), 485–497. doi:10.3758/CABN.8.4.485.

    Article  CAS  Google Scholar 

  • Ruff, R. M., Levin, H. S., & Mather, S. (1989). Recovery of memory after mild head injury: A three center study. In H. S. Levin, H. M. Eisenberg, & A. L. Benton (Eds.), Mild head injury. New York: Oxford University Press.

    Google Scholar 

  • Ruffolo, C. F., Friedland, J. F., Dawson, D. R., Colantonio, A., & Lindsay, P. H. (1999). Mild traumatic brain injury from motor vehicle accidents: factors associated with return to work. Archives of Physical Medicine and Rehabilitation, 80(4), 392–398.

    Article  PubMed  CAS  Google Scholar 

  • Rutgers, D. R., Toulgoat, F., Cazejust, J., Fillard, P., Lasjaunias, P., & Ducreux, D. (2008). White matter abnormalities in mild traumatic brain injury: a diffusion tensor imaging study. AJNR. American Journal of Neuroradiology, 29(3), 514–519. doi:10.3174/ajnr.A0856.

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann, J. D., & Pandya, D. N. (2006). Fiber pathways of the brain. New York: Oxford University Press.

    Book  Google Scholar 

  • Schretlen, D. J., & Shapiro, A. M. (2003). A quantitative review of the effects of traumatic brain injury on cognitive functioning. International Review of Psychiatry, 15(4), 341–349.

    Article  PubMed  Google Scholar 

  • Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 2349–2356.

    Article  PubMed  CAS  Google Scholar 

  • Seminowicz, D. A., & Davis, K. D. (2007). Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task. Journal of Neurophysiology, 97(5), 3651–3659. doi:10.1152/jn.01210.2006.

    Article  PubMed  Google Scholar 

  • Sharp, D. J., Beckmann, C. F., Greenwood, R., Kinnunen, K. M., Bonnelle, V., De Boissezon, X., et al. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134(Pt 8), 2233–2247. doi:10.1093/brain/awr175.

    Article  PubMed  Google Scholar 

  • Sheline, Y. I., Price, J. L., Yan, Z., & Mintun, M. A. (2010). Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11020–11025. doi:10.1073/pnas.1000446107.

    Article  PubMed  CAS  Google Scholar 

  • Sidaros, A., Engberg, A. W., Sidaros, K., Liptrot, M. G., Herning, M., Petersen, P., et al. (2008). Diffusion tensor imaging during recovery from severe traumatic brain injury and relation to clinical outcome: a longitudinal study. Brain, 131(Pt 2), 559–572. doi:10.1093/brain/awm294.

    Article  PubMed  Google Scholar 

  • Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505. doi:10.1016/j.neuroimage.2006.02.024.

    Article  PubMed  Google Scholar 

  • Sosin, D. M., Sniezek, J. E., & Thurman, D. J. (1996). Incidence of mild and moderate brain injury in the United States, 1991. Brain Injury, 10(1), 47–54.

    Article  PubMed  CAS  Google Scholar 

  • Sponheim, S. R., McGuire, K. A., Kang, S. S., Davenport, N. D., Aviyente, S., Bernat, E. M., et al. (2010). Evidence of disrupted functional connectivity in the brain after combat-related blast injury. NeuroImage, 54(Suppl 1), S21–S29. doi:10.1016/j.neuroimage.2010.09.007.

    PubMed  Google Scholar 

  • Stein, S. C., Spettell, C., Young, G., & Ross, S. E. (1993). Limitations of neurological assessment in mild head injury. Brain Injury, 7(5), 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). A Compendium of neuropsychological tests: Administration, norms, and commentary (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  • Stuss, D. T., Stethem, L. L., Hugenholtz, H., Picton, T., Pivik, J., & Richard, M. T. (1989). Reaction time after head injury: fatigue, divided and focused attention, and consistency of performance. Journal of Neurology, Neurosurgery, and Psychiatry, 52(6), 742–748.

    Article  PubMed  CAS  Google Scholar 

  • Sui, J., Pearlson, G., Caprihan, A., Adali, T., Kiehl, K. A., Liu, J., et al. (2011). Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+joint ICA model. NeuroImage, 57(3), 839–855. doi:10.1016/j.neuroimage.2011.05.055.

    Article  PubMed  Google Scholar 

  • Teipel, S. J., Bokde, A. L., Meindl, T., Amaro, E., Jr., Soldner, J., Reiser, M. F., et al. (2009). White matter microstructure underlying default mode network connectivity in the human brain. NeuroImage, 49(3), 2021–2032. doi:10.1016/j.neuroimage.2009.10.067.

    Article  PubMed  Google Scholar 

  • Temkin, N. R., Machamer, J. E., & Dikmen, S. S. (2003). Correlates of functional status 3–5 years after traumatic brain injury with CT abnormalities. Journal of Neurotrauma, 20(3), 229–241.

    Article  PubMed  Google Scholar 

  • Upadhyay, J., Maleki, N., Potter, J., Elman, I., Rudrauf, D., Knudsen, J., et al. (2010). Alterations in brain structure and functional connectivity in prescription opioid-dependent patients. Brain, 133(Pt 7), 2098–2114. doi:10.1093/brain/awq138.

    Article  PubMed  Google Scholar 

  • van de Ven, V. G., Formisano, E., Prvulovic, D., Roeder, C. H., & Linden, D. E. (2004). Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Human Brain Mapping, 22(3), 165–178. doi:10.1002/hbm.20022.

    Article  PubMed  Google Scholar 

  • van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534. doi:10.1016/j.euroneuro.2010.03.008.

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel, M. P., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2009). Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Human Brain Mapping, 30(10), 3127–3141. doi:10.1002/hbm.20737.

    Article  PubMed  Google Scholar 

  • Vasa, R. A., Grados, M., Slomine, B., Herskovits, E. H., Thompson, R. E., Salorio, C., et al. (2004). Neuroimaging correlates of anxiety after pediatric traumatic brain injury. Biological Psychiatry, 55(3), 208–216.

    Article  PubMed  Google Scholar 

  • Wager, T. D., & Smith, E. E. (2003). Neuroimaging studies of working memory: a meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 3(4), 255–274.

    Article  Google Scholar 

  • Whitman, S., Coonley-Hoganson, R., & Desai, B. T. (1984). Comparative head trauma experiences in two socioeconomically different Chicago-area communities: a population study. American Journal of Epidemiology, 119, 570–580.

    PubMed  CAS  Google Scholar 

  • Wilde, E. A., McCauley, S. R., Hunter, J. V., Bigler, E. D., Chu, Z., Wang, Z. J., et al. (2008). Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neurology, 70(12), 948–955.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, G. S. (1993). Wide range achievement test (3rd ed.). Wilmington: Wide Range.

    Google Scholar 

  • Woodward, T. S., Cairo, T. A., Ruff, C. C., Takane, Y., Hunter, M. A., & Ngan, E. T. (2006). Functional connectivity reveals load dependent neural systems underlying encoding and maintenance in verbal working memory. Neuroscience, 139(1), 317–325.

    Article  PubMed  CAS  Google Scholar 

  • Wozniak, J. R., Krach, L., Ward, E., Mueller, B. A., Muetzel, R., Schnoebelen, S., et al. (2007). Neurocognitive and neuroimaging correlates of pediatric traumatic brain injury: a diffusion tensor imaging (DTI) study. [Research Support, N.I.H., Extramural]. Archives of Clinical Neuropsychology, 22(5), 555–568.

    Article  PubMed  Google Scholar 

  • Zaki, J., Ochsner, K. N., Hanelin, J., Wager, T. D., & Mackey, S. C. (2007). Different circuits for different pain: patterns of functional connectivity reveal distinct networks for processing pain in self and others. Social Neuroscience, 2(3–4), 276–291. doi:10.1080/17470910701401973.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by a Hartford Hospital Open Competition Grant.

Conflict of interest

The authors report they have no conflicts of interest with this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Stevens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Brain regions comprising each of the twelve non-artifactual ICA components detected during eyes-open “resting state.” The table lists brain peak x, y, z coordinates in MNI stereotactic space for each separate brain region, anatomical labels, and t statistic from the one-sample t test that determined spatial structure of each functionally-connected network. Results were thresholded at p < .05 FWE correcting for searching the whole brain (25 contiguous voxels). The direction of the t statistics (+ or −) indicates whether that brain region showed positive- or negative-going BOLD signal change. (DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, M.C., Lovejoy, D., Kim, J. et al. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging and Behavior 6, 293–318 (2012). https://doi.org/10.1007/s11682-012-9157-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-012-9157-4

Keywords

Navigation