Effects of phosphorus fertilizer application on phosphorus fractions in different organs of Cordia trichotoma

Abstract

The application of phosphorus (P) to soil can increase its availability to plants and alter P fractions in annual and perennial organs of Cordia trichotoma. If a portion of P accumulates in perennial organs in organic fractions it can be used in the next growth season, possibly decreasing plant dependence on P derived from soil fertilization. However, if P is preferentially accumulated in inorganic fractions in annual organs, plants will be more dependent on phosphate fertilization. This study aimed to evaluate the distribution of P fractions in organs of C. trichotoma grown on sandy soil treated with 120 and 360 kg P2O5 ha−1. The control was a zero application. After 24 months following fertilization, C. trichotoma seedlings were cut and separated into leaves, branches, stems and roots, dried, ground and subjected to chemical fractionation of P, which estimates fractions of total soluble P, soluble inorganic and organic P, lipid P, P associated ribonucleic acid and deoxyribonucleic acid, and residual P. P in annual organs, as leaves, accumulated preferentially in the soluble inorganic fraction in both treatments. In perennial organs such as stems and branches, P accumulated preferentially in the soluble organic fraction. The application of 300% of the recommended dosage (360 kg P2O5 ha−1) promoted the accumulation of P in soluble organic fractions which may contribute to annual growth the following season and be a strategy to reduce the dependence of 2-year-old stands on soil-derived P and on fertilizers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Berghetti ÁLP, Araujo MM, Bovolini MP, Tonetto TDS, Muniz MFB (2015) Seedling morphology and control of pathogens in seeds of Cordia trichotoma. Florest Amb 22:99–106

    Google Scholar 

  2. Berghetti ÁLP, Araujo MM, da Silva Tonetto TI, Aimi SC, Navroski MC, Turchetto F, Zavistanovicz TC (2016) Growth of Cordia trichotoma seedlings in different sizes of recipients and doses of fertilizer. Afr J Agric Res 11:2450–2455

    Google Scholar 

  3. Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu RevPlant Physiol 24:225–252

    CAS  Google Scholar 

  4. Borém RAT, Ramos DP (2002) Variação estacional e topográfica de nutrientes na serapilheira de um fragmento de Mata Atlântica. Cerne 8:42–59

    Google Scholar 

  5. Bortoluzzi EC, Pérez CA, Ardisson JD, Tiecher T, Caner L (2015) Occurrence of iron and aluminum sesquioxides and their implications for the P sorption in subtropical soils. Appl Clay Sci 104:196–204

    CAS  Google Scholar 

  6. Cadorin DA, Malavasi UC, Coutinho PWR, Dranski JAL, Malavasi MDM (2015) Methyl jasmonate and stem bending, hardening and initial growth of Cordia trichotoma seedlings. Cerne 21:657–664

    Google Scholar 

  7. Carnevali NHDS, Marchetti ME, Vieira MDC, Carnevali TDO, Ramos DD (2016) Eficiência nutricional de mudas de Stryphnodendron polyphyllum em função de nitrogênio e fósforo. Cienc Florest 26:449–461

    Google Scholar 

  8. Carvalho PER (2003) Espécies arbóreas brasileiras, 1st edn. Academic Press, Brasília

    Google Scholar 

  9. Casali CA, Kaminski J, Piccin R, Arbugeri FE, Doneda A (2011) A mineralização das formas de fósforo do tecido de plantas de cobertura. Inform Agron 135:21–24

    Google Scholar 

  10. Chapin FS, Bieleski RL (1982) Mild phosphorus stress in barley and a related low-phosphorus-adapted barley grass: phosphorus fractions and phosphate absorption in relation to growth. Physiol Plant 54:309–317

    CAS  Google Scholar 

  11. CQFS RS/SC (2004) Comissão, de química e fertilidade do solo. Manual de adubação e calagem para os Estados do Rio Grande do Sul e de Santa Catarina. 10 Ed. Porto Alegre, RS, Brazil: Sociedade Brasileira de Ciência do Solo, p 400

  12. Da Ros CO, Rex FE, Ribeiro IR, Kafer PS, Rodrigues AC, da Silva RF, Somavilla L (2015) Uso de substrato compostado na produção de mudas de Eucalyptus dunnii e Cordia trichotoma. Florest Amb 22:549–558

    Google Scholar 

  13. Embrapa (2013) Sistema Brasileiro de Classificação de Solos, 3rd edn. Embrapa, Brasília, p 353

    Google Scholar 

  14. Fink JR, Inda AV, Bayer C, Torrent J, Barrón V (2014) Mineralogy and phosphorus adsorption in soils of south and central-west Brazil under conventional and no-tillage systems. Acta Sci-Agron 36:379–387

    CAS  Google Scholar 

  15. Fink JR, Inda AV, Bavaresco J, Barrón V, Torrent J, Bayer C (2016) Adsorption and desorption of phosphorus in subtropical soils as affected by management system and mineralogy. Soil Tillage Res 155:62–68

    Google Scholar 

  16. Freitas ECSD, Paiva HND, Leite HG, Oliveira Neto SND (2017) Effect of phosphate fertilization and base saturation of substrate on the seedlings growth and quality of Plathymenia foliolosa Benth. Rev Árvore 41:1–9

    Google Scholar 

  17. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    PubMed  Google Scholar 

  18. Lambers H, Finnegan PM, Laliberté E, Pearse SJ, Ryan MH, Shane MW, Veneklaas EJ (2011) Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: Are there lessons to be learned for future crops? Plant Physiol 156:1058–1066

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lima R, Severino LS, Cazetta JO, de Azevedo CA, Sofiatti V, Arriel NH (2011) Redistribuição de nutrientes em folhas de pinhão-manso entre estádios fenológicos. Rev Bras Eng Agr Amb 11:1175–1179

    Google Scholar 

  20. Machado GG, Pastorini LH, Souza LA, Barbeiro C, Santos LS (2016) Germinação de diásporos e crescimento inicial de Cordia trichotoma (Vell.) Arrab. Ex Steud. (Boraginaceae). Iheringia Ser Bot 70:279–286

    Google Scholar 

  21. Marschner H (2012) Mineral nutrition of higher plants, 3rd edn. Elsevier, London, p 889

    Google Scholar 

  22. Martinez HEP, Novais RF, Rodrigues LA, Sacramento LVSD (2005) Phosphate forms in plant and their internal buffering in five soybean cultivars. Rev Bras Cienc Solo 29:249–257

    CAS  Google Scholar 

  23. Miyachi S, Tamiya H (1961) Distribution and turnover of phosphate compounds in growing chlorella cells. Plant Cell Physiol 2:405–414

    CAS  Google Scholar 

  24. Murphy J, Riley JP (1962) A modified single solution methods for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    CAS  Google Scholar 

  25. Niklas JK (2006) Plant allometry, leaf nitrogen and phosphorus stoichiometry, and interspecific trends in annual growth rates. Ann Bot 9:155–163

    Google Scholar 

  26. Niu F, Zhang D, Li Z, Van Iersel MW, Alem P (2015) Morphological response of Eucalyptus seedlings to phosphorus supply through hydroponic system. Sci Hortic 194:295–303

    CAS  Google Scholar 

  27. Noack SR, McLaughlin MJ, Smernik RJ, McBeath TM, Armstrong RD (2014) Phosphorus speciation in mature wheat and canola plants as affected by phosphorus supply. Plant Soil 378:125–137

    CAS  Google Scholar 

  28. Oliveira RAD, Comin JJ, Tiecher T, Piccin R, Somavilla LM, Loss A, Lourenzi CR, Kurtz C, Brunetto G (2017) Release of phosphorus forms from cover crop residues in agroecological no-till onion production. Rev Bras Cienc Solo 41:1–16

    Google Scholar 

  29. Pereira JM, Cambraia J, Júnior EMF, Ribeiro C (2008) Efeito do alumínio sobre a absorção, o acúmulo e o fracionamento do fósforo em sorgo. Bragantia 67:961–967

    CAS  Google Scholar 

  30. Piccin R, Couto RDR, Bellinaso RJS, Gatiboni LC, Conti LD, Rodrigues LAT, Michelon LS, Kulmann MSS, Brunetto G (2017a) Phosphorus forms in leaves and their relationships with must composition and yield in grapevines. Pesqui Agropecu Bras 52:319–327

    Google Scholar 

  31. Piccin R, Kaminski J, Ceretta CA, Tiecher T, Gatiboni LC, Bellinaso RJS, Marchezan C, Souza ROS, Brunetto G (2017b) Distribution and redistribution of phosphorus forms in grapevines. Sci Hortic 218:125–131

    CAS  Google Scholar 

  32. Pinheiro J, Bates D, DebRoy S, Sarka D, R Core Team (2014) Nlme: linear and nonlinear mixed effects models. R Found Stat Comput 3:1–118

    Google Scholar 

  33. R Core Team (2017) R: a language and environment for statistical computing. https://www.r-project.org/

  34. Reef R, Ball MC, Feller IC, Lovelock CE (2010) Relationship between RNA: DNA ratio, growth and elemental stoichiometry in mangrove trees. Funct Ecol 24:1064–1072

    Google Scholar 

  35. Rossa ÜB, Angelo AC, Bognola IA, Westphalen DJ, Milani JE (2015) Fertilizante de liberação lenta no desenvolvimento de mudas de Eucalyptus grandis. Rev Floresta 45:85–96

    Google Scholar 

  36. Santos JZL, Resende ÁV, Neto AEF, Corte EF (2008) Crescimento, acúmulo de fósforo e frações fosfatadas em mudas de sete espécies arbóreas nativas. Rev Árvore 32:799–807

    CAS  Google Scholar 

  37. Sartoretto LM, Rossi E (2014) Caracterização de três espécies florestais de importância econômica. Unoesc Cienc-Acet 5:145–152

    Google Scholar 

  38. Silveira RLVA, Gava JL (2004). Nutrição e adubação fosfatada em eucalipto. In: Yamada T, Abdalla SRS. Fósforo na agricultura brasileira. 2. Ed. Piracicaba, SP, Brazil: Associação brasileira para pesquisa da potassa e do fosfato, pp 495–536

  39. Staff, Soil Survey (2010) Keys to soil taxonomy, 12th edn. Department of Agriculture, Soil Conservation Service, Washington, DC, p 360

    Google Scholar 

  40. Stahl J, Ernani PR, Gatiboni LC, Chaves DM, Neves CU (2013) Produção de massa seca e eficiência nutricional de clones de Eucalyptus dunnii e Eucalyptus benthamii em função da adição de doses de fósforo ao solo. Cienc Florest 23:287–295

    Google Scholar 

  41. Suzuki Y, Makino A, Mae T (2001) An efficient method for extraction of RNA from rice leaves at different ages using benzyl chloride. J Exp Bot 52:1575–1579

    CAS  PubMed  Google Scholar 

  42. Tagliavini M, Baldi E, Lucchi P, Antonelli M, Sorrenti G, Baruzzi G, Faedi W (2005) Dynamics of nutrients uptake by strawberry plants (Fragaria × ananassa Dutch.) grown in soil and soilless culture. Eur J Agron 23:15–25

    CAS  Google Scholar 

  43. Taiz L, Zeiger E (2013) Fisiologia Vegetal, 5th edn. Artmed, Porto Alegre, p 954

    Google Scholar 

  44. Taiz L, Zeiger E, Møller IM, Murphy A (2017) Fisiologia e desenvolvimento vegetal, 6th edn. Artmed, Porto Alegre, p 858

    Google Scholar 

  45. Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. Departamento de solos, Universidade Federal do Rio Grande do Sul, Porto Alegre

    Google Scholar 

  46. Ter Braak CJ, Smilauer P (2002). CANOCO Reference manual and CanoDraw for windows user’s guide: software for Canonical Community Ordination (version 4.5). www.canoco.com

  47. Thomas H, Sadras V (2001) The capture and gratuitous disposal of resources by plants. Funct Ecol 15:3–12

    Google Scholar 

  48. Valadares SV, da Silva LF, Valadares RV, Fernandes LA, Neves JCL, Sampaio RA (2015) Plasticidade fenotípica e frações fosfatadas em espécies florestais como resposta à aplicação de fósforo. Rev Árvore 39:225–232

    Google Scholar 

  49. Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 95:306–320

    Google Scholar 

  50. Williams LE (1987) Growth of ‘Thompson seedless’ grapevines: II. Nitrogen distribution. J Am Soc Hortic Sci 112:330–333

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matheus S. S. Kulmann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This study was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yu Lei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulmann, M.S.S., Stefanello, L.O.S., Schwalbert, R.A. et al. Effects of phosphorus fertilizer application on phosphorus fractions in different organs of Cordia trichotoma. J. For. Res. 32, 725–732 (2021). https://doi.org/10.1007/s11676-020-01136-4

Download citation

Keywords

  • Chemical fractionation
  • Phosphorus
  • Phosphate fertilization
  • Plant phosphorus