Tree mortality and biomass loss in drought-affected forests of East Texas, USA

Abstract

Changes in tree mortality due to severe drought can alter forest structure, composition, dynamics, ecosystem services, carbon fluxes, and energy interactions between the atmosphere and land surfaces. We utilized long-term (2000‒2017, 3 full inventory cycles) Forest Inventory and Analysis (FIA) data to examine tree mortality and biomass loss in drought-affected forests for East Texas, USA. Plots that experienced six or more years of droughts during those censuses were selected based on 12-month moderate drought severity [Standardized Precipitation Evaporation Index (SPEI) -1.0]. Plots that experienced other disturbances and inconsistent records were excluded from the analysis. In total, 222 plots were retained from nearly 4000 plots. Generalized nonlinear mixed models (GNMMs) were used to examine the changes in tree mortality and recruitment rates for selected plots. The results showed that tree mortality rates and biomass loss to mortality increased overall, and across tree sizes, dominant genera, height classes, and ecoregions. An average mortality rate of 5.89% year−1 during the study period could be incited by water stress created by the regional prolonged and episodic drought events. The overall plot and species-group level recruitment rates decreased during the study period. Forest mortality showed mixed results regarding basal area and forest density using all plots together and when analyzed the plots by stand origin and ecoregion. Higher mortality rates of smaller trees were detected and were likely compounded by density-dependent factors. Comparative analysis of drought-induced tree mortality using hydro-meteorological data along with drought severity and length gradient is suggested to better understand the effects of drought on tree mortality and biomass loss around and beyond East Texas in the southeastern United States.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Adams HD, Guardiola-Claramonte M, Barron-Gafford GA et al (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc Natl Acad Sci 106:7063–7066. https://doi.org/10.1073/pnas.0901438106

    Article  PubMed  Google Scholar 

  2. Adams HD, Germino MJ, Breshears DD et al (2013) Nonstructural leaf carbohydrate dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism. New Phytol 197:1142–1151. https://doi.org/10.1111/nph.12102

    CAS  Article  PubMed  Google Scholar 

  3. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  4. Baguskas SA, Peterson SH, Bookhagen B, Still CJ (2014) Evaluating spatial patterns of drought-induced tree mortality in a coastal California pine forest. For Ecol Manage 315:43–53. https://doi.org/10.1016/j.foreco.2013.12.020

    Article  Google Scholar 

  5. Barber B Billings R Boggus T et al (2009) Texas statewide assessment of forest resources. Texas A&M Forest Service

  6. Bennett AC, Mcdowell NG, Allen CD, Anderson-Teixeira KJ (2015) Larger trees suffer most during drought in forests worldwide. Nat Plants 1:1–5. https://doi.org/10.1038/nplants.2015.139

    Article  Google Scholar 

  7. Bernal M, Estiarte M, Peñuelas J (2011) Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biol 13:252–257. https://doi.org/10.1111/j.1438-8677.2010.00358.x

    CAS  Article  PubMed  Google Scholar 

  8. Bigler C, Bugmann H (2004) Predicting the time of tree death using dendrochronological data. Ecol Appl 14:902–914. https://doi.org/10.1890/03-5011

    Article  Google Scholar 

  9. Bigler C, Gavin DG, Gunning C, Veblen TT (2007) Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116:1983–1994. https://doi.org/10.1111/j.2007.0030-1299.16034.x

    Article  Google Scholar 

  10. Brien MJO, Leuzinger S, Philipson CD et al (2014) Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat Clim Chang 4:710–714. https://doi.org/10.1038/nclimate2281

    CAS  Article  Google Scholar 

  11. Carnicer J, Coll M, Ninyerola M et al (2011) Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc Natl Acad Sci 108:1474–1478. https://doi.org/10.1073/pnas.1010070108

    CAS  Article  PubMed  Google Scholar 

  12. Chao KJ, Phillips OL, Gloor E et al (2008) Growth and wood density predict tree mortality in Amazon forests. J Ecol 96:281–292. https://doi.org/10.1111/j.1365-2745.2007.01343.x

    Article  Google Scholar 

  13. Clark JS, Bell DM, Hersh MH, Nichols L (2011) Climate change vulnerability of forest biodiversity: climate and competition tracking of demographic rates. Glob Chang Biol 17:1834–1849. https://doi.org/10.1111/j.1365-2486.2010.02380.x

    Article  Google Scholar 

  14. Clark JS, Iverson L, Woodall CW et al (2016) The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob Chang Biol. https://doi.org/10.1111/gcb.13160

    Article  PubMed  PubMed Central  Google Scholar 

  15. Colangelo M, Camarero JJ, Borghetti M et al (2017) Size matters a lot: drought-affected Italian oaks are smaller and show lower growth prior to tree death. Front Plant Sci 8:1–14. https://doi.org/10.3389/fpls.2017.00135

    Article  Google Scholar 

  16. Cooper JA, Bentley JW (2012) East Texas, 2011 forest inventory and analysis factsheet. e-Science Updat SRS-052 5

  17. Crosby M, Fan Z, Spetich M, et al (2012) Relationship between crown dieback and drought in the Southeastern United States. In: Morin Randall S, Liknes, Greg C Proc 2012 FIA Symposium from status to trends pp 316–318

  18. Crosby MK, Fan Z, Spetich MA et al (2015) Early indications of drought impacts on forests in the southeastern United States. For Chron 91:376–383. https://doi.org/10.5558/tfc2015-067

    Article  Google Scholar 

  19. da Costa ACL, Galbraith D, Almeida S et al (2010) Effect of 7 yr of experimental drought on vegetation dynamics and biomass storage of an eastern Amazonian rainforest. New Phytol 187:579–591. https://doi.org/10.1111/j.1469-8137.2010.03309.x

    Article  PubMed  Google Scholar 

  20. Deligöz A, Cankara FG (2019) Differences in physiological and biochemical responses to summer drought of Pinus nigra subsp. pallasiana and Pinus brutia in a natural mixed stand. J For Res. https://doi.org/10.1007/s11676-018-00876-8

    Article  Google Scholar 

  21. Desprez-Loustau M-L, Marçais B, Nageleisen L-M et al (2006) Interactive effects of drought and pathogens in forest trees. Ann For Sci 63:597–612. https://doi.org/10.1051/forest:2006040

    Article  Google Scholar 

  22. Dooley KJW (2018) Forests of east Texas, 2016. U.S. Department of Agriculture Forest Service, Southern Research Station, Asheville, NC, Asheville

    Google Scholar 

  23. Edgar CB, Westfall JA, Klockow PA et al (2019) Interpreting effects of multiple, large-scale disturbances using national forest inventory data: a case study of standing dead trees in east Texas, USA. For Ecol Manage 437:27–40. https://doi.org/10.1016/j.foreco.2019.01.027

    Article  Google Scholar 

  24. Elkin C, Giuggiola A, Rigling A, Bugmann H (2015) Short-and long-term efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps. Ecol Appl 25:1083–1098. https://doi.org/10.1890/14-0690.1

    Article  PubMed  Google Scholar 

  25. Engelbrecht BMJ, Comita LS, Condit R et al (2007) Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447:80–83. https://doi.org/10.1038/nature05747

    CAS  Article  PubMed  Google Scholar 

  26. EPA (2012) Level III Ecoregions of Texas. In: Corvallis OR ftp://ftp.epa.gov/wed/ecoregions/tx/tx_eco_l3.zip, http://edg.epa.gov. Accessed 4 July 2015

  27. Frank D, Reichstein M, Bahn M et al (2015) Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob Chang Biol. https://doi.org/10.1111/gcb.12916

    Article  PubMed  PubMed Central  Google Scholar 

  28. Franklin JF, Shugart HH, Harmon ME (1987) Tree death as an ecological process: the causes, consequences, and variability of tree mortality. Bioscience 37:550–556

    Article  Google Scholar 

  29. Franklin JF, Spies TA, Van Pelt R et al (2002) Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. For Ecol Manage 155:399–423. https://doi.org/10.1016/S0378-1127(01)00575-8

    Article  Google Scholar 

  30. Free CM, Matthew Landis R, Grogan J et al (2014) Management implications of long-term tree growth and mortality rates: a modeling study of big-leaf mahogany (Swietenia macrophylla) in the Brazilian amazon. For Ecol Manage 330:46–54. https://doi.org/10.1016/j.foreco.2014.05.057

    Article  Google Scholar 

  31. Fridley JD, Wright JP (2012) Drivers of secondary succession rates across temperate latitudes of the Eastern USA: climate, soils, and species pools. Oecologia 168:1069–1077. https://doi.org/10.1007/s00442-011-2152-4

    Article  PubMed  Google Scholar 

  32. Frolking S, Palace MW, Clark DB et al (2009) Forest disturbance and recovery: a general review in the context of space borne remote sensing of impacts on aboveground biomass and canopy structure. J Geophys Res Biogeosci 114:1–27. https://doi.org/10.1029/2008JG000911

    Article  Google Scholar 

  33. Ganey JL, Vojta SC (2011) Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA. For Ecol Manage 261:162–168. https://doi.org/10.1016/j.foreco.2010.09.048

    Article  Google Scholar 

  34. Gea-Izquierdo G, Viguera B, Cabrera M, Cañellas I (2014) Drought induced decline could portend widespread pine mortality at the xeric ecotone in managed mediterranean pine–oak woodlands. For Ecol Manage 320:70–82. https://doi.org/10.1016/j.foreco.2014.02.025

    Article  Google Scholar 

  35. Giuggiola A, Bugmann H, Zingg A et al (2013) Reduction of stand density increases drought resistance in xeric Scots pine forests. For Ecol Manage 310:827–835. https://doi.org/10.1016/j.foreco.2013.09.030

    Article  Google Scholar 

  36. Grogan J, Landis RM, Free CM et al (2014) Big-leaf mahogany Swietenia macrophylla population dynamics and implications for sustainable management. J Appl Ecol 51:664–674. https://doi.org/10.1111/1365-2664.12210

    Article  Google Scholar 

  37. Grote R, Kiese R, Grünwald T et al (2011) Modelling forest carbon balances considering tree mortality and removal. Agric For Meteorol 151:179–190. https://doi.org/10.1016/j.agrformet.2010.10.002

    Article  Google Scholar 

  38. Guarín A, Taylor AH (2005) Drought triggered tree mortality in mixed conifer forests in Yosemite National Park, California, USA. For Ecol Manage 218:229–244. https://doi.org/10.1016/j.foreco.2005.07.014

    Article  Google Scholar 

  39. Gustafson EJ, Shinneman douglas J (2015) Approaches to modeling landscape-scale drought-induced forest mortality. In: Perera AH et al (ed) Modeling of forest landscape disturbances. Springer International publishing, Switzerland, pp 1–321

  40. Gustafson EJ, Sturtevant BR (2013) Modeling forest mortality caused by drought stress: implications for climate change. Ecosystems 16:60–74. https://doi.org/10.1007/s10021-012-9596-1

    Article  Google Scholar 

  41. Halofsky JE, Hemstrom MA, Conklin DR et al (2013) Assessing potential climate change effects on vegetation using a linked model approach. Ecol Modell 266:131–143. https://doi.org/10.1016/j.ecolmodel.2013.07.003

    Article  Google Scholar 

  42. Hanna P, Kulakowski D (2012) The influences of climate on aspen dieback. For Ecol Manage 274:91–98. https://doi.org/10.1016/j.foreco.2012.02.009

    Article  Google Scholar 

  43. Huang L, McDonald-Buller EC, McGaughey G et al (2014) Annual variability in leaf area index and isoprene and monoterpene emissions during drought years in Texas. Atmos Environ 92:240–249. https://doi.org/10.1016/j.atmosenv.2014.04.016

    CAS  Article  Google Scholar 

  44. Huang L, He B, Chen A et al (2016) Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Sci Rep 6:1–7. https://doi.org/10.1038/srep24639

    CAS  Article  Google Scholar 

  45. Hurteau MD, Bradford JB, Fulé PZ et al (2013) Climate change, fire management, and ecological services in the southwestern US. For Ecol Manage 327:280–289. https://doi.org/10.1016/j.foreco.2013.08.007

    Article  Google Scholar 

  46. IPCC (2013) Summary for policymakers. In: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. p 33

  47. Keller F, Lischke H, Mathis T et al (2002) Effects of climate, fire, and humans on forest dynamics: forest simulations compared to the palaeological record. Ecol Modell 152:109–127

    Article  Google Scholar 

  48. Klockow PA, Vogel JG, Edgar CB, Moore GW (2018) Lagged mortality among tree species four years after an exceptional drought in east Texas. Ecosphere 9:1–14. https://doi.org/10.1002/ecs2.2455

    Article  Google Scholar 

  49. Klos RJ, Wang GG, Bauerle WL, Rieck JR (2009) Drought impact on forest growth and mortality in the southeast USA: an analysis using forest health and monitoring data. Ecol Appl 19:699–708. https://doi.org/10.1890/08-0330.1

    Article  PubMed  Google Scholar 

  50. Lewis SL, Phillips OL, Sheil D et al (2004) Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. J Ecol 92:929–944. https://doi.org/10.1111/j.0022-0477.2004.00923.x

    Article  Google Scholar 

  51. Liang G, Bu J, Zhang S et al (2019) Effects of drought stress on the photosynthetic physiological parameters of Populus × euramericana “Neva”. J For Res 30:409–416. https://doi.org/10.1007/s11676-018-0667-9

    CAS  Article  Google Scholar 

  52. Lindner M, Maroschek M, Netherer S et al (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage 259:698–709. https://doi.org/10.1016/j.foreco.2009.09.023

    Article  Google Scholar 

  53. Luo Y, Chen HYH (2013) Observations from old forests underestimate climate change effects on tree mortality. Nat Commun 4:1655. https://doi.org/10.1038/ncomms2681

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. McDowell NG, Sevanto S (2010) The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol 186:264–266. https://doi.org/10.1111/j.1469-8137.2010.03232.x

    Article  PubMed  Google Scholar 

  55. McDowell N, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytol 178:719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x

    Article  PubMed  Google Scholar 

  56. Mencuccini M, Martínez-Vilalta J, Vanderklein D et al (2005) Size-mediated ageing reduces vigour in trees. Ecol Lett 8:1183–1190. https://doi.org/10.1111/j.1461-0248.2005.00819.x

    CAS  Article  PubMed  Google Scholar 

  57. Misson L, Degueldre D, Collin C et al (2011) Phenological responses to extreme droughts in a Mediterranean forest. Glob Chang Biol 17:1036–1048. https://doi.org/10.1111/j.1365-2486.2010.02348.x

    Article  Google Scholar 

  58. Mitchell PJ, O’Grady AP, Hayes KR, Pinkard EA (2014) Exposure of trees to drought-induced die-off is defined by a common climatic threshold across different vegetation types. Ecol Evol 4:1088–1101. https://doi.org/10.1002/ece3.1008

    Article  PubMed  PubMed Central  Google Scholar 

  59. Moorcroft APR, Hurtt GC, Pacala SW et al (2001) A method for scaling vegetation dynamics:  the ecosystem demography model (ED). Ecol Monogr 71:557–585. https://doi.org/10.1890/0012-9615(2001)071%5b0557:amfsvd%5d2.0.co;2

    Article  Google Scholar 

  60. Moore GW, Edgar CB, Vogel J et al (2016) Tree mortality from an exceptional drought spanning mesic to semiarid ecoregions. Ecol Appl 26:602–611. https://doi.org/10.1890/15-0330.1

    Article  PubMed  Google Scholar 

  61. Morin RS, Randolph KDC, Steinman J (2015) Mortality rates associated with crown health for eastern forest tree species. Environ Monit Assess 187:1–11. https://doi.org/10.1007/s10661-015-4332-x

    Article  Google Scholar 

  62. Mou YM, Fang O, Cheng X, Qiu H (2018) Recent tree growth decline unprecedented over the last four centuries in a Tibetan juniper forest. J For Res 30:1429–1436. https://doi.org/10.1007/s11676-018-0856-6

    Article  Google Scholar 

  63. Nielsen-Gammon JW (2011) The changing climate of Texas. In: Schmandt J, North GR, Clarkson J (eds) The impact of global warming on texas, second. University of Texas Press, Austin, pp 39–68

    Google Scholar 

  64. O’Connell BM, LaPoint EB, Turner JA, et al (2015) The forest inventory and analysis database: database description and user guide for phase 2 (version 6.0.2)

  65. Pataki DE, Oren R, Phillips N (1998) Responses of sap flux and stomatal conductance of Pinus taeda trees to stepwise reductions in leaf area. J Exp Bot 49:871–878

    CAS  Article  Google Scholar 

  66. Peng C, Ma Z, Lei X et al (2011) A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat Clim Chang 1:467–471. https://doi.org/10.1038/nclimate1293

    Article  Google Scholar 

  67. Phillips NG, Ryan MG, Bond BJ et al (2003) Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiol 23:237–245. https://doi.org/10.1093/treephys/23.4.237

    CAS  Article  PubMed  Google Scholar 

  68. Phillips OL, Aragao LEOC, Lewis SL et al (2009) Drought sensitivity of the amazon rainforest. Science 323:1344–1347. https://doi.org/10.1126/science.1164033

    CAS  Article  PubMed  Google Scholar 

  69. Prado-Junior JA, Schiavini I, Vale VS et al (2016) Functional traits shape size-dependent growth and mortality rates of dry forest tree species. J Plant Ecol 10:895–906. https://doi.org/10.1093/jpe/rtw103

    Article  Google Scholar 

  70. Rowland L, da Costa ACL, Galbraith DR et al (2015) Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528:119–122. https://doi.org/10.1038/nature15539

    CAS  Article  PubMed  Google Scholar 

  71. Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281. https://doi.org/10.1111/j.1469-8137.2009.03167.x

    Article  PubMed  Google Scholar 

  72. Saud P, Lynch TB, Guldin JM (2016) Twenty five years long survival analysis of an individual shortleaf pine trees. In: Schweitzer Callie J, Clatterbuck Wayne K, Oswalt CM (ed) Proceedings of the 18th biennial southern silvicultural research conference; 2015 March 2–5; Knoxville, TN. e-Gen. Tech. Rep. SRS-212. Asheville, NC: US Department of Agriculture, Forest Service, Southern Research Station. pp 555–557

  73. Saud P, Lynch TB, Cram DS, Guldin JM (2019) An annual basal area growth model with multiplicative climate modifier fitted to longitudinal data for shortleaf pine. For Int J For Res. https://doi.org/10.1093/forestry/cpz023

    Article  Google Scholar 

  74. Scholz FG, Phillips NG, Bucci SJ et al (2011) Hydraulic capacitance: biophysics and functional significance of internal water sources in relation to tree size. In: Meinzer F, Lachenbruch B, Dawson TE (eds) Size-and age-related changes in tree structure and function. Springer, Berlin, pp 341–361

    Google Scholar 

  75. Seidl R, Rammer W, Scheller RM, Spies TA (2012) An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Modell 231:87–100. https://doi.org/10.1016/j.ecolmodel.2012.02.015

    Article  Google Scholar 

  76. Shaw JD (2015) An evaluation of FIA’s stand age variable. In: Stanton SM, Christensen GA comps (eds) Pushing boundaries: new directions in inventory techniques and applications: forest inventory and analysis (FIA) symposium 2015. Portland, Oregon. Gen. Tech. Rep. PNW-GTR-931. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, Oregon, p 57

  77. Sheil D, Burslem DFRP, Alder D (1995) The interpretation and misinterpretation of mortality rate measures. J Ecol 83:331–333

    Article  Google Scholar 

  78. Sileshi G (2008) The excess-zero problem in soil animal count data and choice of appropriate models for statistical inference. Pedobiologia (Jena) 52:1–17. https://doi.org/10.1016/j.pedobi.2007.11.003

    Article  Google Scholar 

  79. Slik JWF (2004) El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia 141:114–120. https://doi.org/10.1007/s00442-004-1635-y

    CAS  Article  PubMed  Google Scholar 

  80. Sohngen B, Tian X (2016) Global climate change impacts on forests and markets. For Policy Econ 72:18–26. https://doi.org/10.1016/j.forpol.2016.06.011

    Article  Google Scholar 

  81. Stone JE, Kolb TE, Covington WW (2002) Effects of restoration thinning on presettlement in Northern Arizona. Restor Ecol 7:172–182

    Article  Google Scholar 

  82. Stone C, Penman T, Turner R (2012) Managing drought-induced mortality in Pinus radiata plantations under climate change conditions: a local approach using digital camera data. For Ecol Manage 265:94–101. https://doi.org/10.1016/j.foreco.2011.10.008

    Article  Google Scholar 

  83. Subedi MR (2016) Evaluating geospatial distribution of drought, drought-induced tree mortality and biomass loss in east Texas, USA. MS Thesis, Texas A&M University-Kingsville, Kingsville, Texas

  84. Subedi MR, Xi W, Edgar CB et al (2018) Assessment of geostatistical methods for spatiotemporal analysis of drought patterns in East Texas, USA. Spat Inf Res 27:11–21. https://doi.org/10.1007/s41324-018-0216-9

    Article  Google Scholar 

  85. Taeger S, Zang C, Liesebach M et al (2013) Impact of climate and drought events on the growth of Scots pine (Pinus sylvestris L.) provenances. For Ecol Manage 307:30–42. https://doi.org/10.1016/j.foreco.2013.06.053

    Article  Google Scholar 

  86. Van Gunst KJ, Weisberg PJ, Yang J, Fan Y (2016) Do denser forests have greater risk of tree mortality: a remote sensing analysis of density-dependent forest mortality. For Ecol Manage 359:19–32. https://doi.org/10.1016/j.foreco.2015.09.032

    Article  Google Scholar 

  87. van Mantgem PJ, Stephenson NL (2007) Apparent climatically induced increase of tree mortality rates in a temperate forest. Ecol Lett 10:909–916. https://doi.org/10.1111/j.1461-0248.2007.01080.x

    Article  PubMed  Google Scholar 

  88. van Mantgem PJ, Stephenson NL, Byrne JC et al (2009) Widespread increase of tree mortality rates in the western United States. Science 323:521–524. https://doi.org/10.1126/science.1165000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Vose J, Peterson D, Patel-Weynand T (2012) Effects of climatic variability and change on forest ecosystems : a comprehensive science synthesis for the U.S. forest sector. US Dep Agric 265

  90. Vose JM, Clark JS, Luce CH (2016) Introduction to drought and US forests: impacts and potential management responses. For Ecol Manage 380:296–298. https://doi.org/10.1016/j.foreco.2016.09.030

    Article  Google Scholar 

  91. Wang W, Peng C, Kneeshaw DD et al (2012) Drought-induced tree mortality: ecological consequences, causes, and modeling. Environ Rev 20:109–121. https://doi.org/10.1139/a2012-004

    Article  Google Scholar 

  92. Waring EF, Schwilk DW (2014) Plant dieback under exceptional drought driven by elevation, not by plant traits, in Big Bend National Park, Texas, USA. PeerJ 2:1–15. https://doi.org/10.7717/peerj.477

    Article  Google Scholar 

  93. Weemstra M, Eilmann B, Sass-Klaassen UGW, Sterck FJ (2013) Summer droughts limit tree growth across 10 temperate species on a productive forest site. For Ecol Manage 306:142–149. https://doi.org/10.1016/j.foreco.2013.06.007

    Article  Google Scholar 

  94. Wiken E, Franscisco JN, Glenn G (2011) North American terrestrial ecoregions—level III. Commission for Environmental Cooperation, Montreal

    Google Scholar 

  95. Williams AP, Allen CD, Millar CI et al (2010) Forest responses to increasing aridity and warmth in the southwestern United States. Proc Natl Acad Sci U S A 107:21289–21294. https://doi.org/10.1073/pnas.0914211107

    Article  PubMed  PubMed Central  Google Scholar 

  96. Williams CA, Collatz GJ, Masek J et al (2013) Impacts of disturbance history on forest carbon stocks and fluxes: merging satellite disturbance mapping with forest inventory data in a carbon cycle model framework. Remote Sens Environ 151:57–71. https://doi.org/10.1016/j.rse.2013.10.034

    Article  Google Scholar 

  97. Xi W (2005) Forest response to natural disturbance: change in structure and diversity on a North Carolina Piedmont forest in response to catastrophic wind events. University of North Carolina at Chapel Hill

  98. Xi W, Peet RK, Urban DL (2008) Changes in forest structure, species diversity and spatial pattern following hurricane disturbance in a Piedmont North Carolina forest, USA. J Plant Ecol 1:43–57. https://doi.org/10.1093/jpe/rtm003

    Article  Google Scholar 

  99. Zens MS, Peart DR (2003) Dealing with death data: individual hazards, mortality and bias. Trends Ecol Evol 18:366–373

    Article  Google Scholar 

  100. Zeppel MJB, Anderegg WRL, Adams HD (2013) Forest mortality due to drought: latest insights, evidence and unresolved questions on physiological pathways and consequences of tree death. New Phytol 197:372–374. https://doi.org/10.1111/nph.12090

    Article  PubMed  Google Scholar 

  101. Zhang J, Luguang J, Zhiming F, Peng L (2012) Detecting effects of the recent drought on vegetation in Southwestern China. J Resour Ecol 3:43–49. https://doi.org/10.5814/j.issn.1674-764x.2012.01.007

    Article  Google Scholar 

  102. Zhang X, Lei Y, Pang Y et al (2014) Tree mortality in response to climate change induced drought across Beijing, China. Clim Change 124:179–190. https://doi.org/10.1007/s10584-014-1089-0

    Article  Google Scholar 

  103. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943. https://doi.org/10.1126/science.1192666

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the Department of Physics and Geosciences, Texas A&M University-Kingsville, for providing access to the Geospatial Research Laboratory. We would like to thank the staff from Sam Houston, Sabine, Angelina, and Davy Crocket National Forests and Big Thicket National Preserve, especially Mr. Daniel P. Jauregui from Sam Houston National Forest, for his guidance during our field trip in 2014 and 2015. We would like to thank Drs. Eric Gustafson and Xiongqing Zhang for sharing their scripts.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mukti Ram Subedi or Weimin Xi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by partial financial support from a University Research Award, a STEP-HG Faculty Research Award, and Research Startup Funds from Texas A&M University-Kingsville to Dr. Xi.

The online version is available at http://www.springerlink.com

Corresponding editor: Yu Lei.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Subedi, M.R., Xi, W., Edgar, C.B. et al. Tree mortality and biomass loss in drought-affected forests of East Texas, USA. J. For. Res. 32, 67–80 (2021). https://doi.org/10.1007/s11676-020-01106-w

Download citation

Keywords

  • Generalized nonlinear mixed model
  • Endogenous factors
  • Drought index
  • Standardized precipitation evaporation index (SPEI)
  • Above-ground biomass
  • Competition index
  • Biomass lost to mortality
  • East Texas