The effects of different nitrogen sources on camptothecin content and related gene expression in Camptotheca acuminata seedlings

Abstract

Camptotheac acuminata Decne is a unique tree species in China with an important secondary metabolite, camptothecin (CPT), used in the treatment of cancer. Nitrogen (N) is an important element that affects plant growth and the accumulation of CPT. Reports on the effect of N on CPT synthesis from a genetic perspective are scarce. To explore the effects of different N sources and levels on CPT synthesis in C. acuminata, two-year-old seedlings were fertilized with different concentrations of pure ammonium sulphate, source of ammonium N (NH4+–N), and potassium nitrate for nitrate N (NO3–N). Concentrations of 2.5, 5, 7.5, and 10 g pot−1 NH4+–N and NO3–N were used. The results showed that 7.5 g NH4+–N and NO3–N treatments were best for growth and fresh weight of leaves. Compared with the other treatments, the CPT content, tryptophan synthase and tryptophan decarboxylase activities, and expression of the CaTSB and CaTDC1 genes under the 2.5 g NH4+–N and NO3–N treatments peaked significantly at 30 days. However, the expression of CaTDC2 surpassed that of the other two genes at 60 days. Therefore, compared with NH4+–N source, the NO3–N source was more beneficial for growth, and NO3–N was better for CPT yield. Consequently, leaves of C. acuminata treated with 2.5 g NO3–N could be harvested after 30 days to obtain maximum CPT content. CaTDC1 is more closely linked to CPT synthesis. The results of this study improved the production of CPT in C. acuminata via fertilization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alam MM, Naeem M, Khan MMA, Uddin M (2017) Vincristine and vinblastine anticancer catharanthus alkaloids: pharmacological applications and strategies for yield improvement. Catharanthus roseus. Springer, Cham, pp 277–307

    Google Scholar 

  2. Allan W (1935) An examination of methods for determining organic carbon and nitrogen in soils. J Agric Sci 25(4):12

    Google Scholar 

  3. Anderson CR, Peterso ME, Frampton RA, Bulman SR, Keena S, Curtin D (2018) Rapid increase in soil pH solubilises organic matter, dramatically increases denitrification potential and strongly stimulates microorganisms from the Firmicutes phylum. PeerJ 6:e2690. https://doi.org/10.7717/peerj.6090

    CAS  Article  Google Scholar 

  4. Bensaddek L, Gillet F, Saucedo JEN, Fliniaux MA (2001) The effect of nitrate and ammonium concentrations on growth and alkaloid accumulation of Atropa belladonna hairy roots. J Biotechnol 85(1):35–40

    CAS  PubMed  Google Scholar 

  5. Campbell WH (1988) Nitrate reductase and its role in nitrate assimilation in pots. Physiol Plant 74(1):214–219

    CAS  Google Scholar 

  6. Deepthi S, Satheeshkumar K (2016) Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tissue Organ Cult 124(3):483–493

    CAS  Google Scholar 

  7. Di DW, Zhang C, Luo P, An CW, Guo GQ (2016) The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regul 78(3):275–285

    CAS  Google Scholar 

  8. Domínguez-Valdivia MD, Aparicio-Tejo PM, Lamsfus C, Cruz C, Martins-Loução MA, Moran JF (2008) Nitrogen nutrition and antioxidant metabolism in ammonium-tolerant and sensitive pots. Physiol Plant 132(3):359–369

    PubMed  Google Scholar 

  9. Feng LX, Su FB, Li JX, Wen ZL, Qin FM, Yang YH (2014) Density and fertilization influence on the leaves camptothecin content of C. acuminata half year old seedling. J Fujian For Sci Technol 41(3): 40–43

    Google Scholar 

  10. Fritz C, Palacios-Rojas N, Feil R, Stitt M (2006) Regulation of secondary metabolism by the carbon–nitrogen status in tobacco: nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J 46(4):533–548

    CAS  PubMed  Google Scholar 

  11. Góngora-Castillo E, Childs KL, Fedewa G, Hamilton JP, Liscombe DK, Magallanes-Lundback M, Mandadi KK, Nims E, Runguphan W, Vaillancourt B, Varbanova-Herde M, DellaPenna D, McKnight TD, O' Connor S, Buell CR (2012) Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal pot species. PLoS ONE 7(12):e52506. https://doi.org/10.1371/journal.pone.0052506

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Hu Y, Yu W, Song L, Du XH, Ma X, Liu Y, Wu SH, Ying Y (2016) Effects of light on production of camptothecin and expression of key enzyme genes in seedlings of Camptotheca acuminate Decne. Acta Physiol Plant 38:65

    Google Scholar 

  13. Hu YB, Peuke AD, Zhao XY, Yan JX, Li CM (2019) Effects of simulated atmospheric nitrogen deposition on foliar chemistry and physiology of hybrid poplar seedlings. Plant Physiol Biochem 143:94–108

    CAS  PubMed  Google Scholar 

  14. Kai G, Teng X, Cui L, Li SS, Hao XL, Shi M, Yan B (2014) Effect of three pot hormone elicitors on the camptothecin accumulation and gene transcript profiling in Camptotheca Acuminata seedlings. Int J Sci 3(2014–01):86–95

    Google Scholar 

  15. Kováčik J, Klejdus B (2014) Induction of phenolic metabolites and physiological changes in chamomile pots in relation to nitrogen nutrition. Food Chem 142(3):334–341

    PubMed  Google Scholar 

  16. Kuang HL, Wang GB, Cao FL (2016) Influence of nitrogen levels on photosynthesis' nutrient elements and camptothecin content of Camptotheca acuminata. J Nanjing For Univ 40(3):16–19

    Google Scholar 

  17. Last RL, Bissinger PH, Mahoney DJ, Radwanski ER, Fink GR (1991) Tryptophan mutants in Arabidopsis: the consequences of duplicated tryptophan synthase beta genes. Plant Cell 3(4):345–358

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li W, Yang L, Jiang L, Zhang G, Luo Y (2016) Molecular cloning and functional characterization of a cinnamate 4-hydroxylase-encoding gene from Camptotheca acuminata. Acta Physiol Plant 38:256

    Google Scholar 

  19. Li S, He H, Xi Y, Li LZ (2018) Chemical constituents and pharmacological effects of the fruits of Camptotheca acuminata: a review of its phytochemistry. Asian J Tradit Med 13(1):40–48

    Google Scholar 

  20. Lin C, Chen P, Wang C, Wang C, Chang Y, Tai C, Tai C (2014) Antitumor effects and biological mechanism of action of the aqueous extract of the Camptotheca acuminata fruit in human endometrial carcinoma cells. Evid Complement Altern Med 2014:e564810. https://doi.org/10.1155/2014/564810

    Article  Google Scholar 

  21. Liu Z, Adams JC, Viator HP, Constantin RJ, Carpenter SB (1999) Influence of soil fertilization plant spacing, and coppicing on growth, stomatal conductance, abscisic acid, and camptothecin levels in Camptutheca acuminata seedlings. Physiol Plant 105:402–408

    CAS  Google Scholar 

  22. Liu Y, Song L, Yu W, Hu Y, Ma X, Wu J, Ying Y (2015) Light quality modifies camptothecin production and gene expression of biosynthesis in Camptotheca acuminata Decne seedlings. Ind Crops Prod 66:137–143

    CAS  Google Scholar 

  23. Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65(20):2735–2749

    CAS  PubMed  Google Scholar 

  24. Lu H, Mcknight TD (1999) Tissue-specific expression of the β-subunit of tryptophan synthase in Camptotheca acuminata, an indole alkaloid-producing plant. Plant Physiol 120(1):43–52

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mc Lean EO, Watson ME (1985) Soil measurements of plant-available potassium. Madison: Potassium in Agriculture, pp 277–308

  26. Misra N, Gupta AK (2006) Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings. J Plant Physiol 163(1):11–18

    CAS  PubMed  Google Scholar 

  27. Pan X, Xu H, Gao X (2004) Improvement of growth and camptothecin yield by altering nitrogen source supply in cell suspension cultures of Camptotheca acuminata. Biotech Lett 26(22):1745–1748

    CAS  Google Scholar 

  28. Roosta HR, Estaji A, Niknam F (2018) Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Inst Exp Biol Czech Acad Sci 56(2):606–615

    CAS  Google Scholar 

  29. Ruan J, Zhang J, Li M, Zhu Y, Sun L, Jin H, Su H, Xu M (2014) Dependence of UV-B-induced camptothecin production on nitrate reductase-mediated nitric oxide signaling in Camptotheca acuminata suspension cell cultures. Plant Cell Tissue Organ Cult 118:269–278

    CAS  Google Scholar 

  30. Sadre R, Magallanes-Lundback M, Pradhan S, Salim V, Mesberg A, Jones D, DellaPenna D (2016) Metabolite diversity in alkaloid biosynthesis: a multi-lane (diastereomer) highway for camptothecin synthesis in Camptotheca acuminata. Plant Cell 28(8):1926–1944

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharma A, Verma P, Mathur A, Mathur AK (2018) Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. Protoplasma 255(1):425–435

    CAS  PubMed  Google Scholar 

  32. Silvestrini A, Pasqua G, Botta B, Monacellia B, Heijdenc R, Verpoortec R (2002) Effects of alkaloid precursor feeding on a Camptotheca acuminata cell line. Plant Physiol Biochem 40(9):749–753

    CAS  Google Scholar 

  33. Sun SQ, Yan XF (2008a) Effects of nitrogen forms on camptothecin content and its metabolism-related enzymes activities in Camptotheca acuminata seedlings. China J Chin Mater Med 33(13):1519

    CAS  Google Scholar 

  34. Sun SQ, Yan XF (2008b) Effect of nitrogen on camptothecin content in Camptotheca acuminata seedlings. China J Chin Mater Med 33(4):356–358

    CAS  Google Scholar 

  35. Sun Y, Luo H, Li Y, Sun C, Song J, Niu Y (2011) Pyrosequencing of the Camptotheca acuminata transcriptome reveals putative genes involved in camptothecin biosynthesis and transport. BMC Genom 12(1):533

    CAS  Google Scholar 

  36. Toivonen L, Ojala M, Kauppinen V (1991) Studies on the optimization of growth and indole alkaloid production by hairy root cultures of Catharanthus roseus. Biotechnol Bioeng 37(7):673–680

    CAS  PubMed  Google Scholar 

  37. Valletta A, Trainotti L, Santamaria AR, Pasqua G (2010) Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol Oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (nyssaceae). BMC Plant Biol 10(1):69–69

    PubMed  PubMed Central  Google Scholar 

  38. Wu YQ, Wang GB, Cao FL, Zu YG (2016) Effects of substrate, cuttings and root promoting agent on rooting of Camptotheca acuminata. J Nanjing For Univ 40(3):1–8

    Google Scholar 

  39. Yadav UP, Ayre BG, Bush DR (2015) Transgenic approaches to altering carbon and nitrogen partitioning in whole pots: assessing the potential to improve crop yields and nutritional quality. Front Plant Sci 6:275

    PubMed  PubMed Central  Google Scholar 

  40. Yan F, Wang Y, Yu T, Zhang YH, Dai SJ (2003) Variation in camptothecin content in Camptotheca acuminata leaves. Bot Bull Acad Sin 44:99–105

    CAS  Google Scholar 

  41. Yang LS, Pu QY, Cu K (2015) Effects of different phosphorus-applying levels on seedling growth and camptothecin accumulation in Camptotheca acuminata seedlings. J Sichuan For Sci Technol 36(2):98–101

    Google Scholar 

  42. Yang Y, Pu X, Qu X, Chen F, Zhang G, Luo Y (2017) Enhanced production of camptothecin and biological preparation of N 1-acetylkynuramine in Camptotheca acuminata cell suspension cultures. Appl Microbiol Biotechnol 101(10):4053–4062

    CAS  PubMed  Google Scholar 

  43. Ying YQ, Song LL, Jacobs DF, Mei L, Liu P, Jin SH, Wu JS (2015) Physiological response to drought stress in Camptotheca acuminata seedlings from two provenances. Front Plant Sci 6:361

    PubMed  PubMed Central  Google Scholar 

  44. Zhang X, Liu Y, Liu Q, Zong B, Yuan XP, Sun HE, Wang J, Zang L, Ma ZZ, Liu HM, He SB, Chu XT, Xu YF (2018) Nitric oxide is involved in abscisic acid-induced photosynthesis and antioxidant system of tall fescue seedlings response to low-light stress. Environ Exp Bot 155:226–238

    CAS  Google Scholar 

  45. Zhao D, Hamilton JP, Pham GM, Crisovan E, Wiegert-Rininger K, Vaillancourt B, DellaPenna D, Buell CR (2017) De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. GigaScience 6(9):1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu J, Wang M, Wen W, Yu R (2015) Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus. Pharmacogn Rev 9(17):24

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yamei Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This research was sponsored by the 13th Five-Year-Plan National Projects for Camptotheca acuminata Decne Efficient Cultivation Technology Research of China (2017YFD0600706).

The online version is available at http://www.springerlink.com

Corresponding editor: Yanbo Hu.

Xiaode Wang and Sainan Bian: Co-first authors with the same contribution to this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Bian, S., Chang, P. et al. The effects of different nitrogen sources on camptothecin content and related gene expression in Camptotheca acuminata seedlings. J. For. Res. 31, 1347–1357 (2020). https://doi.org/10.1007/s11676-019-01035-3

Download citation

Keywords

  • Ammonium sulfate
  • Camptotheca acuminata
  • Camptothecin
  • Gene expression
  • Potassium nitrate