Genetic diversity and structure of Drimys brasiliensis in southern Brazil: insights for conservation

Abstract

Population genetics studies are widely recognized for generating useful knowledge for biodiversity conservation. To date, however, little is known about the levels and distribution of genetic diversity of Drymis brasiliensis (Miers LC), a tree species from the Atlantic Rainforest. Therefore, in this study, we investigated how genetic diversity is distributed within and among populations of D. brasiliensis from southern Brazil using allozyme markers to genotype reproductive trees (8 populations) and seedlings (3 populations). Furthermore, in two populations, we established two permanent plots (5.1 and 1 ha) to analyze fine-scale genetic structure (FSGS). Studied populations presented low levels of genetic diversity (reproductive = 0.085; seedlings = 0.054) and high fixation indexes (reproductive = 0.396; seedlings = 0.231). Genetic divergence among populations was equal to 0.05, which is significant, signaling that few populations can conserve large portions of the species total genetic diversity. FSGS was only detected for one population, when reproductive individuals were separated by less than 40 m. Low genetic diversity combined with high fixation indexes clearly signal a risk of losing diversity. Therefore, conservation efforts should be aimed at enhancing gene flow within the studied populations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alfenas AC (1998) Eletroforese de isoenzimas e proteínas afins: fundamentos e aplicações em plantas e microorganismos. Editora Universidade Federal de Viçosa, Viçosa, p 574

    Google Scholar 

  2. Antiqueira LMOR, Kageyama PY (2014) Genetic diversity of four populations of Qualea grandiflora Mart. in fragments of the Brazilian Cerrado. Genetica 142:11–21

    Article  Google Scholar 

  3. Backes P, Irgang BE (2002) Árvores do sul: guia de identificação e interesse ecológico. Clube da Árvore, Instituto Souza Cruz, Santa Cruz do Sul, p 326

    Google Scholar 

  4. Bawa KS (1990) Plant-pollinator interactions in Tropical Rain Forests. Annu Rev Ecol Syst 21:399–422

    Article  Google Scholar 

  5. CNCFlora (2012) Drimys brasiliensis. Lista Vermelha da flora brasileira versão 2012.2. http://cncflora.jbrj.gov.br/portal/pt-br/profile/Drimysbrasiliensis. Accessed 12 March 2018

  6. de Lacerda AEB, Kanashiro M, Sebbenn AM (2008) Effects of reduced impact logging on genetic diversity and spatial genetic structure of a Hymenaea courbaril population in the Brazilian Amazon Forest. For Ecol Manage 255:1034–1043

    Article  Google Scholar 

  7. del Hoyo A, López-Pujol J, Chung MY, Lasso de la Vega B (2012) Population genetics and conservation of the extremely narrow Pyrenean palaeoendemic Glandora oleifolia (Boraginaceae). Plant Ecol Divers 5:501–511

    Article  Google Scholar 

  8. Diniz-Filho JAF, Melo DB, Oliveira G, Collevatti RG, Soares TN, Nabout JC, Lima JS, Dobrovolski R, Chaves LJ, Naves RV, Loyola RD, Telles MPC (2012) Planning for optimal conservation of geographical genetic variability within species. Conserv Genet 13:1085–1093

    Article  Google Scholar 

  9. Diniz-Filho JAF, Diniz JVBPL, Telles MPC (2016) Exhaustive search for conservation networks of populations representing genetic diversity. Genet Mol Res 15:1–10

    Article  Google Scholar 

  10. Ellegren H, Galtier N (2016) Determinants of genetic diversity. Nat Rev Genet 17:422–433

    CAS  Article  Google Scholar 

  11. Fægri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon Press, Oxford, p 224

    Google Scholar 

  12. Frankham R (2003) Genetics and conservation biology. C R Biol 326:22–29

    Article  Google Scholar 

  13. Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  14. Gottsberger G, Silberbauer-Gottsberger I, Ehrendorfer F (1980) Reproductive biology in the primitive relic Angiosperm Drimys brasiliensis (Winteraceae). Plant Syst Evol 135:11–39

    Article  Google Scholar 

  15. Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). http://www2.unil.ch/popgen/softwares/fstat.htm. Accessed 6 May 2016

  16. Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Soltis D, Soltis P (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 43–63

    Google Scholar 

  17. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  18. Hedrick PW (2001) Conservation genetics: where are we now? Trends Ecol Evol 16:629–636

    Article  Google Scholar 

  19. Hmeljevski KV, Reis A, Montagna T, Reis MS (2011) Genetic diversity, genetic drift and mixed mating system in small subpopulations of Dyckia ibiramensis, a rare endemic bromeliad from Southern Brazil. Conserv Genet 12:761–769

    Article  Google Scholar 

  20. Li CC (1976) Population genetics. University Chicago Press, Chicago, p 366

    Google Scholar 

  21. Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  22. López-Sepúlveda P, Takayama K, Greimler J, Crawford DJ, Peñailillo P, Baeza M, Ruiz E, Kohl G, Tremetsberger K, Gatica A, Letelier L, Novoa P, Novak J, Stuessy TF (2014) Progressive migration and anagenesis in Drimys confertifolia of the Juan Fernández Archipelago, Chile. J Plant Res 128:73–90

    Article  Google Scholar 

  23. Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    CAS  Article  Google Scholar 

  24. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  Google Scholar 

  25. Mantovani A, Morellato LPC, Reis MS (2006) Internal genetic structure and outcrossing rate in a natural population of Araucaria angustifolia (Bert.) O. Kuntze. J Hered 97:466–472

    CAS  Article  Google Scholar 

  26. Mariot A, Mantovani A, Bittencourt R, Ferreira DK, Reis MS (2010) Estrutura populacional e incremento corrente anual de casca-de-anta (Drimys brasiliensis Miers—Winteraceae) em Caçador, Santa Catarina, Brasil. Rev Bras Plantas Med 12:168–178

    Article  Google Scholar 

  27. Mariot A, Mantovani A, Bittencourt R, Reis MS (2014) Aspectos da biologia reprodutiva de Drimys brasiliensis Miers (Winteraceae) em Floresta Ombrófila Mista, Sul do Brasil. Ciência Florest 24:877–888

    Article  Google Scholar 

  28. Mathiasen P, Premoli AC (2013) Fine-scale genetic structure of Nothofagus pumilio (lenga) at contrasting elevations of the altitudinal gradient. Genetica 141:95–105

    Article  Google Scholar 

  29. Medina-Macedo L, Sebbenn AM, Lacerda AEB, Ribeiro JZ, Soccol CR, Bittencourt JVM (2015) High levels of genetic diversity through pollen flow of the coniferous Araucaria angustifolia: a landscape level study in Southern Brazil. Tree Genet Genomes 11:1–14

    Article  Google Scholar 

  30. Montagna T, Ferreira DK, Steiner F, Loch FASS, Bittencourt R, Silva JZ, Mantovani A, Reis MS (2012) A importância das Unidades de Conservação na manutenção da diversidade genética de araucária (Araucaria angustifolia) no Estado de Santa Catarina. Biodivers Bras 2:17–24

    Google Scholar 

  31. Montagna T, Lauterjung MB, Candido-Ribeiro R, Silva JZ, Hoeltgebaum MP, Costa NCF, Bernardi AP, Reis MS (2018) Spatial genetic structure, population dynamics and spatial patterns in the distribution of Ocotea catharinensis Mez. from southern Brazil: implications for conservation. Can J For Res 48:506–516

    Article  Google Scholar 

  32. Neel MC, Ellstrand NC (2003) Conservation of genetic diversity in the endangered plant Eriogonum ovalifolium var. vineum (Polygonaceae). Conserv Genet 4:337–352

    CAS  Article  Google Scholar 

  33. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 70:3321–3323

    CAS  Article  Google Scholar 

  34. Paludo GF (2013) Aspectos populacionais de Araucaria angustifolia em paisagem de campo e de floresta. M.Sc thesis of Universidade Federal de Santa Catarina, Florianópolis, Brazil

  35. Reis MS, Montagna T, Mattos AG, Filippon S, Ladio AH, Marques AC, Zechini AA, Peroni N, Mantovani A (2018) Domesticated landscapes in Araucaria Forests, Southern Brazil: a multispecies local conservation-by-use system. Front Ecol Evol 6:11

    Article  Google Scholar 

  36. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  37. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tarazi R, Mantovani A, Reis MS (2010) Fine-scale spatial genetic structure and allozymic diversity in natural populations of Ocotea catharinensis Mez. (Lauraceae). Conserv Genet 11:965–976

    CAS  Article  Google Scholar 

  39. Trinta EF, Santos E (1997) Winteráceas: flora ilustrada catarinense. Itajaí, Herbário Barbosa Rodrigues, p 20

    Google Scholar 

  40. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935

    CAS  Article  Google Scholar 

  41. Vibrans AC, Mcroberts R, Lingner DV, Nicoletti AL, Moser P (2012) Extensão original e atual da cobertura florestal de Santa Catarina. In: Vibrans AC, Sevegnani L, Gasper AL, Lingner DV (eds) Inventário florístico florestal de Santa Catarina—Diversidade e conservação dos remanescentes florestais. Edifurb, Blumenau, pp 65–78

    Google Scholar 

  42. Weir BS, Cockerham CC (1984) Estimating F-Statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  43. White GM, Boshier DH, Powell W (2002) Increased pollen flow counteracts fragmentation in a tropical dry forest: an example from Swietenia humilis Zuccarini. Proc Natl Acad Sci USA 99:2038–2042

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We kindly thank the farmers Josué Dalasanta and Alcebíades Sagiorato for allowing us to conduct research on their properties. We thank the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) and the researchers of Núcleo de Pesquisas em Florestas Tropicais for fieldwork support. We also thank the Laboratório de Fisiologia do Desenvolvimento e Genética Vegetal for providing the necessary infrastructure for the genetic analyses and David Martin for editing the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tiago Montagna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: The work was supported by the Fundo Rotativo de Estímulo à Pesquisa Agropecuária do Estado de Santa Catarina (FEPA), Aperfeiçoamento de Pessoal de Nível Superior (CAPES) to TM, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq:, the Coordenação de, and the) to MSR (304724/2010-6).

The online version is available at http://www.springerlink.com

Corresponding editor: Tao Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mariot, A., Montagna, T. & Reis, M.S. Genetic diversity and structure of Drimys brasiliensis in southern Brazil: insights for conservation. J. For. Res. 31, 1325–1332 (2020). https://doi.org/10.1007/s11676-019-00934-9

Download citation

Keywords

  • Atlantic Rainforest
  • Effective population size
  • Fine-scale genetic structure
  • Seed collection