Identification of tree groups used by secondary cavity-nesting birds to simplify forest management in subtropical forests


In tropical and subtropical forest ecosystems, cavities formed by decay processes are a key but scarce resource for birds that nest and roost in them, which makes them a highly sensitive group to logging. The piedmont forest of northwestern Argentina is a complex ecosystem with 113 tree and 120 bird species. It has high logging pressure on the few, well-conserved forest remnants, complicating the delineation of sustainable management guidelines for each tree or bird species in a short time. Our objective was to reduce the complexity of subtropical forests by grouping tree species according to the characteristics used by secondary cavity-nesting birds (i.e. non excavators). In the piedmont forest, 50 plots of 0.25 ha were sampled to record cavity trees and cavity characteristics. These were then used in a cluster analysis to form tree groups. Additionally, cavities were searched to identify the bird species using the decay-formed cavities. A total of 187 cavity trees, comprising 23 tree species, were recorded, and these formed four tree groups or clusters. We recorded 86 cavities that were used by secondary cavity-nesting bird species. The four tree groups were unequally used by secondary cavity nesters. The tree group that included valuable timber species (Myroxylon peruiferum, Anadenanthera colubrina and Calycophyllum multiflorum) and had the greatest cavity availability represented 71% of total cavity use. Another tree group with valuable timber species (Cedrela balansae and Amburana cearensis), measured > 73 cm DBH and > 21 m tall, had cavity entrances > 0.10 cm2, and contributed 14% of all cavity use by birds. A third group had no highly economically valuable tree species, and included the snag category (i.e. standing dead trees) as well as a 15% of cavity use. The fourth tree group had a DBH < 0.40 cm, only one highly economically valuable tree species (Cordia trichotoma), and supported no cavity use. The clustering of subtropical trees can reduce the complexity of these forests, hence easing their management by focusing on those groups with tree species showing similar characteristics and providing suitable nesting sites for secondary cavity-nesting birds.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Aitken KE, Martin K (2007) The importance of excavators in hole-nesting communities: availability and use of natural tree holes in old mixed forests of western Canada. J Ornithol 148(2):425–434

    Article  Google Scholar 

  2. Arias M, Bianchi AR (1996) Estadísticas climatológicas de la provincia de Salta. EEA Salta. In: Dirección de Medio Ambiente y Recursos Naturales, Gobierno de Salta, Salta, Argentina

  3. Blundo C, Malizia LR (2009) Impacto del aprovechamiento forestal en la estructura y diversidad de la Selva Pedemontana. In: Brown AD, Blendinger PG, Lomáscolo T, García Bes P (eds) En: Selva pedemontana de las Yungas, historia natural, ecología y manejo de un ecosistema en peligro. pp 387–406

  4. Bocanegra-González KT, Fernández-Méndez F, Galvis-Jiménez JD (2015) Grupos funcionales de árboles en bosques secundarios de la región Bajo Calima (Buenaventura, Colombia). Bol Cient Museo Hist Nat 19:17–40

    Article  Google Scholar 

  5. Brown AD, Malizia LR (2004) Las selvas pedemontanas de las Yungas. Cienc Hoy 14(83):52–63

    Google Scholar 

  6. Brown AD, Grau HR, Malizia LR, Grau A (2001) Argentina. In: Kappelle M, Brown AD (eds) Bosques nublados del Neotrópico. InBio, Santo Domingo de Heredia, Costa Rica, pp 623–659

  7. Brown AD, Blendinger PG, Lomáscolo T, Bes PG (2009) Selva pedemontana de las Yungas. Historia natural, ecología y manejo de un ecosistema en peligro. Ediciones del Subtrópico. Tucumán, Argentina, pp 213–273

  8. Casanoves F, Pla L, Di Rienzo JA (2011a) Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos. Centro Agronómico Tropical de Investigación y Enseñanza. Turrialba, Costa Rica, p 84

  9. Casanoves F, Pla L, Di Rienzo JA, Díaz S (2011b) FDiversity: a software package for the integrated analysis of functional diversity. Methods Ecol Evol 2(3):233–237

    Article  Google Scholar 

  10. Cockle KL, Martin K, Wesołowski T (2011a) Woodpeckers, decay, and the future of cavity-nesting vertebrate communities worldwide. Front Ecol Environ 9(7):377–382

    Article  Google Scholar 

  11. Cockle KL, Martin K, Wiebe K (2011b) Selection of nest trees by cavity-nesting birds in the Neotropical Atlantic forest. Biotropica 43(2):228–236

    Article  Google Scholar 

  12. Cornelius C, Cockle K, Politi N, Berkunsky I, Sandoval L, Ojeda V, Rivera L, Hunter M Jr, Martin K (2008) Cavity-nesting birds in neotropical forests: cavities as a potentially limiting resource. Ornitol Neotropical 19(8):253–268

    Google Scholar 

  13. Dennis AJ, Westcott DA (2006) Reducing complexity when studying seed dispersal at community scales: a functional classification of vertebrate seed dispersers in tropical forests. Oecologia 149(4):620–634

    PubMed  Article  Google Scholar 

  14. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) Software Infostat, versión 2008. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina

  15. Drummond MA, Loveland TR (2010) Land-use pressure and a transition to forest-cover loss in the eastern United States. Bioscience 60(4):286–298

    Article  Google Scholar 

  16. Edworthy AB, Martin K (2013) Persistence of tree cavities used by cavity-nesting vertebrates declines in harvested forests. J Wildl Manag 77(4):770–776

    Article  Google Scholar 

  17. Gadow KV, Zhang CY, Wehenkel C, Pommerening A, Corral-Rivas J, Korol M, Myklush S, Ying G, Kiviste A, Zhao XH (2012) Forest structure and diversity. In: Pukkala T, von Gadow K (eds) Continuous cover forestry. Managing forest ecosystems, vol 23. Springer, Netherlands, pp 29–83

  18. Gibbons P, Lindenmayer D (2002) Tree hollows and wildlife conservation in Australia. CSIRO Publishing, Collingwood, p 211

    Google Scholar 

  19. Gibbons P, Lindenmayer DB, Barry SC, Tanton MT (2002) Hollow selection by vertebrate fauna in forests of southeastern Australia and implications for forest management. Biol Conserv 103(1):1–12

    Article  Google Scholar 

  20. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Kommareddy A (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    CAS  Article  Google Scholar 

  21. Imbeau L, Savard JPL, Gagnon R (2000) Comparing bird assemblages in successional black spruce stands originating from fire and logging. Can J Zool 77(12):1850–1860

    Article  Google Scholar 

  22. Le Roux DS, Ikin K, Lindenmayer DB, Manning AD, Gibbons P (2015) Single large or several small? Applying biogeographic principles to tree-level conservation and biodiversity offsets. Biol Conserv 191:558–566

    Article  Google Scholar 

  23. Lindenmayer DB, Franklin JF (2002) Conserving forest biodiversity: a comprehensive multiscaled approach. Island Press, Washington, p 351

    Google Scholar 

  24. Lindenmayer DB, Likens GE (2010) The science and application of ecological monitoring. Biol Conserv 143(6):1317–1328

    Article  Google Scholar 

  25. Lindenmayer DB, Margules CR, Botkin DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14(4):941–950

    Article  Google Scholar 

  26. Lindenmayer DB, Franklin JF, Fischer J (2006) General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol Conserv 131(3):433–445

    Article  Google Scholar 

  27. Lindenmayer DB, Blanchard W, McBurney L, Blair D, Banks S, Likens GE, Franklin JF, Laurance WF, Stein JAR, Gibbons P (2012) Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. PLoS One 7(10):e41864

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Malizia LR, Blendinger PG, Alvarez ME, Rivera LO, Politi N, Nicolossi G (2005) Bird communities in Andean Premontane forests of Northwestern Argentina. Ornitol Neotropical 16(2):231–251

    Google Scholar 

  29. Malizia LR, Blundo C, Pacheco S (2006) Diversidad, estructura y distribución de bosques con cedro (Cedrela sp, Meliacea) en el noroeste de Argentina y Sur de Bolivia. In: Pacheco SY, Brown AG (eds) Ecología y producción de cedros (género Cedrela) de las Yungas australes. Ediciones del Subtrópico. Tucumán, Argentina, pp 83–104

  30. Malizia LR, Pacheco S, Loiselle B (2009) Árboles de valor forestal en las Yungas de la Alta Cuenca del río Bermejo. In: Brown AD, Blendinger PG, Lomáscolo T, García Bes P (eds) Selva pedemontana de las Yungas, historia natural, ecología y manejo de un ecosistema en peligro. Ediciones del Subtrópico, Tucumán, pp 105–120

    Google Scholar 

  31. Martin K, Aitken KE, Wiebe KL (2004) Nest sites and nest webs for cavity-nesting communities in interior British Columbia, Canada: nest characteristics and niche partitioning. The Condor 106(1):5–19

    Article  Google Scholar 

  32. Martinez Pastur G, Peri PL, Huertas Herrera A, Schindler S, Díaz-Delgado R, Lencinas MV, Soler R (2017) Linking potential biodiversity and three ecosystem services in silvopastoral managed forest landscapes of Tierra del Fuego, Argentina. Int J Biodivers Sci Ecosyst Serv Manag 13(2):1–11

    Article  Google Scholar 

  33. McComb BC (2015) Wildlife habitat management: concepts and applications in forestry. Taylor and Francis Group, Boca Raton, p 401

    Google Scholar 

  34. Minetti JM, Bessonart S, Balducci E (2009) La actividad forestal en la Selva Pedemontana del norte de Salta. Ecologıa, historia natural y conservación de la Selva Pedemontana de las Yungas Australes. Ediciones del Subtrópico, Tucumán, pp 367–385

  35. Mönkkönen M, Juutinen A, Mazziotta A, Miettinen K, Podkopaev D, Reunanen P, Salminen H, Tikkanen OP (2014) Spatially dynamic forest management to sustain biodiversity and economic returns. J Environ Manag 134:80–89

    Article  Google Scholar 

  36. Myers JA, Chase JM, Jiménez I, Jørgensen PM, Araujo-Murakami A, Paniagua-Zambrana N, Seidel R (2013) Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol Lett 16(2):151–157

    PubMed  Article  Google Scholar 

  37. Newton I (1998) Population limitation in birds. Academic Press, San Diego, p 597

    Google Scholar 

  38. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686):968–972

    CAS  PubMed  Article  Google Scholar 

  39. Politi N, Hunter M Jr, Rivera L (2009) Nest selection by cavity-nesting birds in subtropical Montane Forests of the Andes: implications for sustainable forest management. Biotropica 41(3):354–360

    Article  Google Scholar 

  40. Politi N, Hunter M Jr, Rivera L (2010) Availability of cavities for avian cavity nesters in selectively logged subtropical montane forests of the Andes. For Ecol Manag 260(5):893–906

    Article  Google Scholar 

  41. Politi N, Hunter M, Rivera L (2012) Assessing the effects of selective logging on birds in Neotropical piedmont and cloud montane forests. Biodivers Conserv 21(12):3131–3155

    Article  Google Scholar 

  42. Politi N, Rivera L, Lizárraga L, Hunter M, Defossé GE (2015) The dichotomy between protection and logging of the Endangered and valuable timber species Amburana cearensis in north-west Argentina. Oryx 49(1):111–117

    Article  Google Scholar 

  43. Prado DE (2000) Seasonally dry forests of tropical South America: from forgotten ecosystems to a new phytogeographic unit. Edinb J Bot 57(3):437–461

    Article  Google Scholar 

  44. Richardson DM, Bradford JW, Range PG, Christensen J (1999) A video probe system to inspect red-cockaded woodpecker cavities. Wildl Soc Bull 27(2):353–356

    Google Scholar 

  45. Ruggera RA, Schaaf AA, Vivanco CG, Politi N, Rivera LO (2016) Exploring nest webs in more detail to improve forest management. For Ecol Manag 372:93–100

    Article  Google Scholar 

  46. van der Hoek Y, Gaona GV, Martin K (2017) The diversity, distribution and conservation status of the tree-cavity-nesting birds of the world. Divers Distrib 23(10):1120–1131

    Article  Google Scholar 

Download references


We thank the assistants that contributed with the fieldwork. We thank Cecilia Garcia for assistance with writing and producing the manuscript. We also thank two anonymous reviewers for their valuable contributions to previous versions of this work.

Author information



Corresponding author

Correspondence to Alejandro A. Schaaf.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project Funding: This work was supported with Funds from Agencia Nacional de Promoción Científica y Tecnológica (PICT 2012-0892, BID, PICT 2014-1388, BID), CONICET (PIP 112-201201-00259 CO), CONICET-UNJU (PIO 1402014100133), and UNJU (SECTER A 0176 and B 046), and CEBio NGO, Idea Wild, Association of Field Ornithologists, Optic for the Tropic, and Rufford Small Grants.

The online version is available at

Corresponding editor: Hu Yanbo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schaaf, A.A., Ruggera, R.A., Tallei, E. et al. Identification of tree groups used by secondary cavity-nesting birds to simplify forest management in subtropical forests. J. For. Res. 31, 1417–1424 (2020).

Download citation


  • Biodiversity
  • Cavity-nesting birds
  • Conservation
  • Logging