Effect of an antioxidant on the life cycle of wood flour/polypropylene composites

Abstract

This study assessed the life cycle of biocomposites with antioxidants by repeated processing. The effects of antioxidants on the life cycle of wood flour/polypropylene (PP) composites were determined by analyzing their mechanical and thermal properties. The composites were repeatedly processed for seven times with pelletizing and extruding. An antioxidant, pentaerythritoltetrakys 3-(3,5-ditert-butyl-4-hydroxyphenyl) propionate, was used. The mechanical strength of the biocomposites decreased after reprocessing. Fourier transformed infrared analysis showed that thermo-oxidative aging occurred during reprocessing. The thermal performance of the resulting composites decreased because of reprocessing. Wood flour/PP has a long lifetime and antioxidants can slow the thermo-oxidative and mechanical degradation during reprocessing.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ashori A, Nourbakhsh A (2010) Reinforced polypropylene composites: effects of chemical compositions and particle size. Bioresour Technol 101(7):2515–2519

    CAS  PubMed  Google Scholar 

  2. Balasuriya PW, Ye L, Mai YW, Wu J (2010) Mechanical properties of wood flake and ash; polyethylene composites. II. Interface modification. J Appl Polym Sci 83(12):2505–2521

    Google Scholar 

  3. Beg MD, Pickering KL (2008) Reprocessing of wood fibre reinforced polypropylene composites. Part I: effects on physical and mechanical properties. Compos Part A Appl Sci Manuf 39(7):1091–1100

    Google Scholar 

  4. Bourmaud A, Baley C (2007) Investigations on the recycling of hemp and sisal fibre reinforced polypropylene composites. Polym Degrad Stab 92(6):1034–1045

    CAS  Google Scholar 

  5. Burgstaller C (2007) Processing of thermal sensitive materials—a case study for wood plastic composites. Monatshefte für Chemie Chem Mon 138(4):343–346

    CAS  Google Scholar 

  6. Cadena C, Delicia A (2014) Effects of solar UV radiation on materials used in agricultural industry in Salta, Argentina: study and characterization. J Mater Sci Chem Eng 02(4):1–14

    CAS  Google Scholar 

  7. CPHC (2017) WPCisapromisingbuildingmaterial. http://www.cphcweb.com/hbjc/show.php?itemid=317

  8. Fonseca-Valero C, Ochoa-Mendoza A, Arranz-Andrés J, González-Sánchez C (2015) Mechanical recycling and composition effects on the properties and structure of hardwood cellulose-reinforced high density polyethylene eco-composites. Compos Part A Appl Sci Manuf 69(69):94–104

    CAS  Google Scholar 

  9. Guerrica-Echevarría G, Eguiazábal JI, Nazábal J (1996) Effects of reprocessing conditions on the properties of unfilled and talc-filled polypropylene. Polym Degrad Stab 53(1):1–8

    Google Scholar 

  10. Iizuka T, Ohtake Y, Tanaka K (2017) A synergistic effect of light and heat on degradation for polypropylene. Zairyo/J Soc Mater Sci Jpn 66(3):238–243

    CAS  Google Scholar 

  11. Jansson A, Kenneth M, Thomas G (2003) Degradation of post-consumer polypropylene materials exposed to simulated recycling—mechanical properties. Polym Degrad Stab 82(1):37–46

    CAS  Google Scholar 

  12. Khonsari A, Taghiyari HR, Karimi A, Tajvidi M (2015) Study on the effects of wood flour geometry on physical and mechanical properties of wood-plastic composites. Maderas Ciencia Y Tecnologia 51(4):289–296

    Google Scholar 

  13. Kurniawan D, Kim BS, Lee HY, Lim J (2013) Effects of repetitive processing, wood content, and coupling agent on the mechanical, thermal, and water absorption properties of wood/polypropylene green composites. J Adhes Sci Technol 27(12):1301–1312

    CAS  Google Scholar 

  14. Lee CH, Hung KC, Chen YL, Wu TL, Chien YC, Wu JH (2012) Effects of polymeric matrix on accelerated UV weathering properties of wood-plastic composites. Holzforschung 66(8):981–987

    CAS  Google Scholar 

  15. Mantia F, La P, Gardette JL (2002) Improvement of the mechanical properties of photo-oxidized films after recycling. Polym Degrad Stab 75(1):1–7

    Google Scholar 

  16. Markarian J (2002) Additive developments aid growth in wood-plastic composites. Plast Addit and Compd 4(11):18–21

    Google Scholar 

  17. Mathew A, Oksman K, Sain M (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101(1):300–310

    CAS  Google Scholar 

  18. Migneault S, Koubaa A, Erchiqui F, Chaala A, Englund K, Krause C, Wolcott M (2008) Effect of fiber length on processing and properties of extruded wood-fiber/HDPE composites. J Appl Polym Sci 110(2):1085–1092

    CAS  Google Scholar 

  19. Minoshima W, White JL, Spruiell JE (1980) Experimental investigation of the influence of molecular weight distribution on the rheological properties of polypropylene melts. Polym Eng Sci 20(17):1166–1176

    CAS  Google Scholar 

  20. Monasse B, Haudin JM (1985) Growth transition and morphology change in polypropylene. Colloid Polym Sci 263(10):822–831

    CAS  Google Scholar 

  21. Najafi SK, Mostafazadeh-Marznaki M, Chaharmahali M, Tajvidi M (2009) Effect of thermomechanical degradation of polypropylene on mechanical properties of wood-polypropylene composites. J Compos Mater 43(22):2543–2554

    CAS  Google Scholar 

  22. Nourbakhsh A, Ashori A, Tabari HZ, Rezaei F (2010) Mechanical and thermo-chemical properties of wood-flour/polypropylene blends. Polym Bull 65(7):691–700

    CAS  Google Scholar 

  23. Peng Y, Liu R, Cao JZ, Guo X (2014) Effects of vitamin E combined with antioxidants on wood flour/polypropylene composites during accelerated weathering. Holzforschung 69(1):113–120

    Google Scholar 

  24. Sailaja RR, Deepthi MV (2011) Mechanical and thermal properties of compatibilized composites of LDPE and esterified unbleached wood pulp. Polym Compos 32(2):199–209

    CAS  Google Scholar 

  25. Sarabi TM, Behravesh AH, Shahi P, Soury E (2012) Reprocessing of extruded wood-plastic composites; mechanical properties. J Biobased Mater Bioenergy 6(2):221–229

    CAS  Google Scholar 

  26. Sarabi TM, Behravesh A, Shahi A, Daryabari Y (2014) Effect of polymeric matrix melt flow index in reprocessing extruded wood-plastic composites. J Thermoplast Compos Mater 27(7):881–894

    CAS  Google Scholar 

  27. Shahi P, Amir H, Behravesh (2011) Processing considerations in the recycling of wood-plastic composites. Regional Meeting of the Polymer Processing Society

  28. Srebrenkoska V, Bogoevagaceva G, Avella M, Errico M, Gentile G (2008) Recycling of polypropylene 1 based eco-composites. Polym Int 57(11):1252–1257

    CAS  Google Scholar 

  29. Stark NM, Berger MJ (1997) Effect of particle size on properties of wood-flour reinforced polypropylene composites. In: Proceedings of the fourth international conference on wood fibre–plastic composites, pp 12–14

  30. Stark N, Rowlands R (2003) Effects of wood fiber characteristics on mechanical properties of wood/polypropylene composites. Wood Fiber Sci 35(2):167–174

    CAS  Google Scholar 

  31. Walz K, Jacobson R, Sanadi AR (1994) Effect of reprocessing/recycling on the mechanical properties of kenaf-PP composites. Internal Report, University of Wisconsin-Madison and Forest Product Laboratory

  32. Zhang ZM, Du H, Wang W, Wang Q (2010) Property changes of wood-fiber/HDPE composites colored by iron oxide pigments after accelerated UV weathering. J For Res 21(1):59–62

    Google Scholar 

  33. Zhang J, Wang H, Ou R, Wang Q (2018) The properties of flax fiber reinforced wood flour/high density polyethylene composites. J For Res 29(2):533–540

    CAS  Google Scholar 

  34. Zhou X, Chen L (2015) Anti-aging agents improving natural weathering properties of bamboo powder/polypropylene foamed composites. Trans Chin Soc Agric Eng 31(12):301–307

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Weihong Wang or Qingwen Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2572018BB07) and the National Natural Science Foundation of China (Grant No. 31670570).

The online version is available at http://www.springerlink.com

Corresponding editor: Yu Lei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, J., Fu, H. et al. Effect of an antioxidant on the life cycle of wood flour/polypropylene composites. J. For. Res. 31, 1435–1443 (2020). https://doi.org/10.1007/s11676-019-00898-w

Download citation

Keywords

  • Wood-plastic composites
  • Polypropylene
  • Reprocessing
  • Antioxidant