Advertisement

Impact of water scarcity on spruce and beech forests

  • Lenka Krupková
  • Kateřina Havránková
  • Jan Krejza
  • Pavel Sedlák
  • Michal V. Marek
Original Paper
  • 72 Downloads

Abstract

One of the greatest threats posed by ongoing climate change may be regarded the drought caused by changes in precipitation distribution. The aim of presented study was to characterize reactions to dry conditions and conditions without drought stress on gross primary production (GPP) and net ecosystem production (NEP) of spruce and beech forests, as these two species dominate within the European continent. Daily courses of GPP and NEP of these two species were evaluated in relation to an expected decrease in CO2 uptake during dry days. The occurrence of CO2 uptake hysteresis in daily production was also investigated. Our study was performed at Bílý Kříž (spruce) and Štítná (beech) mountain forest sites during 2010–2012 period. We applied eddy covariance technique for the estimation of carbon fluxes, vapor pressure deficit and precipitation characteristics together with the SoilClim model for the determination of drought conditions, and the inverse of the Penman–Monteith equation to compute canopy conductance. Significant differences were found in response to reduced water supply for both species. Spruce reacts by closing its stomata before noon and maintaining a reduced photosynthetic activity for the rest of the day, while beech keeps its stomata open as long as possible and slightly reduces photosynthetic activity evenly throughout the entire day. In the spruce forest, we found substantial hysteresis in the light response curve of GPP. In the beech forest, the shape of this curve was different: evening values exceeded morning values.

Keywords

Picea abies Fagus sylvatica Drought stress Hysteresis Eddy covariance 

References

  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684CrossRefGoogle Scholar
  2. Aubinet M, Vesala T, Papale D (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer, Dordrecht, pp 1–438CrossRefGoogle Scholar
  3. Bělská M, Benešová N, Bezděčková L, Bílý J, Buchta N, Daňhelka M, Dvořák P, Fabiánek P, Hána J, Hofmeister T, Jankovská Z, Jurásek A, Kahuda J, Knížek M, Kratochvílová L, Krejzar T, Krnáčová L, Kučera M, Liška J, Lojda J, Lomský B, Lubojacký J, Máchová P, Matějíček J, Modlinger R, Neznajová Z, Novotný R, Pařízek M, Pásek F, Pešková V, Radouš M, Riedl M, Šišák L, Slabý R, Smejkal T, Smrž M, Šrámek V, Stránský V, Tomášek V, Ulrich R (2016) Zpráva o stavu lesa a lesního hospodářství České republiky 2015: report on the state of forests and forestry in the Czech Republic 2015. Prague: Lesnická práce, pp 1–132. ISBN 978-80-7434-324-7Google Scholar
  4. Bolte A, Czajkowski T, Kompa T (2007) The north-eastern distribution range of European beech-a review. Forestry 80(4):413–429CrossRefGoogle Scholar
  5. Bolte A, Ammer C, Lof M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24:473–482CrossRefGoogle Scholar
  6. Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644CrossRefGoogle Scholar
  7. Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML, Belnap J, Anderson JJ, Myers OB, Meyer CW (2005) Regional vegetation die-off in response to global-change-type drought. Proc Natl Acad Sci 102:15144–15148CrossRefPubMedPubMedCentralGoogle Scholar
  8. Campbell GS, Norman JM (1998) An introduction to environmental biophysics. Springer, New York, pp 1–286CrossRefGoogle Scholar
  9. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grunwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533CrossRefPubMedGoogle Scholar
  10. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58CrossRefGoogle Scholar
  11. Elkin C, Gutiérrez A, Leuzinger S, Manusch C, Temperli C, Rasche L, Bugmann H (2013) A 2 & #xB0;C warmer world is not safe for ecosystem services in the European Alps. Glob Change Biol 19:1827–1840CrossRefGoogle Scholar
  12. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grunwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff H, Moors E, Munger JW, Pilegaard K, Rannik U, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69CrossRefGoogle Scholar
  13. Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guomundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Paw KT, Pilegaard K, Rannik U, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as, derived from FLUXNET measurements. Agric For Meteorol 113(1–4):53–74CrossRefGoogle Scholar
  14. Felton A, Nilsson U, Sonesson J, Felton AM, Roberge JM, Ranius T, Ahlstrom M, Bergh J, Bjorkman C, Boberg J, Drossler L, Fahlvik N, Gong P, Holmstrom E, Keskitalo ECH, Klapwijk MJ, Laudon H, Lundmark T, Niklasson M, Nordin A, Pettersson M, Stenlid J, Stens A, Wallertz K (2016) Replacing monocultures with mixed-species stands: ecosystem service implications of two production forest alternatives in Sweden. Ambio 45:S124–S139CrossRefGoogle Scholar
  15. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21(1):1–11CrossRefGoogle Scholar
  16. Ghestem M, Sidle RC, Stokes A (2011) The Influence of Plant Root Systems on Subsurface Flow: implications for Slope Stability. Oxf J Sci Math Biosci 61(11):869–879Google Scholar
  17. Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100(4):291–308CrossRefGoogle Scholar
  18. Hájková L (2012) Atlas fenologických poměrů Česka: Atlas of the phenological conditions in Czechia. Prague: Czech hydrometeorological institute, pp 1–311. ISBN 978-80-86690-98-8Google Scholar
  19. Hikosaka K (1997) Modelling optimal temperature acclimation of the photosynthetic apparatus in C-3 plants with respect to nitrogen use. Ann Bot 80(6):721–730CrossRefGoogle Scholar
  20. Hlasny T, Holusa J, Stepanek P, Turcani M, Polcak N (2011) Expected impacts of climate change on forests: Czech Republic as a case study. J For Sci 57(10):422–431CrossRefGoogle Scholar
  21. Hlavinka P, Trnka M, Balek J, Semeradova D, Hayes M, Svoboda M, Eitzinger J, Mozny M, Fischer M, Hunt E, Zalud Z (2011) Development and evaluation of the SoilClim model for water balance and soil climate estimates. Agric Water Manag 98:1249–1261CrossRefGoogle Scholar
  22. Jankovsky L, Palovcikova D (2003) Dieback of Austrian pine: the epidemic occurrence of Sphaeropsis sapinea in southern Moravia. J For Sci 49(8):389–394CrossRefGoogle Scholar
  23. Johnson IR, Thornley JHM (1985) Temperature dependence of plant and crop processes. Ann Bot 55:1–24CrossRefGoogle Scholar
  24. Kanalas P, Fenyvesi A, Kis J, Szőllősi E, Olah V, Ander I, Mészáros I (2010) Seasonal and diurnal variability in sap flow intensity of mature sessile oak (Quercus petraea (Matt.) Liebl.) trees in relation to microclimatic conditions. Acta Biol Hung 61(Suppl 1):95–108CrossRefPubMedGoogle Scholar
  25. Kenderes K, Mihók B, Standovár T (2008) Thirty years of gap dynamics in a central European beech forest reserve. For 81(1):111–123Google Scholar
  26. Kenk G, Guehne S (2001) Management of transformation in Central Europe. For Ecol Manag 151:107–119CrossRefGoogle Scholar
  27. Kodrík J, Kodrík M (2002) Root biomass of beech as a factor influencing the wind tree stability. J For Sci 48(12):549–564Google Scholar
  28. Körner C (1995) Leaf diffusive conductances in the major vegetation types of the globe. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Springer, Berlin, pp 463–490CrossRefGoogle Scholar
  29. Köstner B, Falge EM, Alsheimer M, Geyer R, Tenhunen JD (1998) Estimating tree canopy water use via xylem sapflow in an old Norway spruce forest and a comparison with simulation-based canopy transpiration estimates. Ann Sci For 55(1–2):125–139CrossRefGoogle Scholar
  30. Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups. Springer, Berlin, pp 1–513CrossRefGoogle Scholar
  31. Lasslop G, Reichstein M, Papale D, Richardson AD, Arneth A, Barr A, Stoy P, Wohlfahrt G (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob Chang Biol 16:187–208CrossRefGoogle Scholar
  32. Launiainen S (2010) Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest. Biogeosci 7:3921–3940CrossRefGoogle Scholar
  33. Leuschner C (2009) Die Trockenheitsempfindlichkeit der Rotbuche vordem Hintergrund des prognostizierten Klimawandels. Jahrbuchder Akademie der Wissenschaften zu Göttingen, Göttingen, pp 281–296Google Scholar
  34. Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstrom M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709CrossRefGoogle Scholar
  35. Lyr H, Fiedler HJ, Tranquillini W (1992) Physiologie und Ökologieder Gehölze. G. Fischer Verlag, Jena, pp 1–620Google Scholar
  36. Mäkinen H, Isomäki A (2004) Thinning intensity and growth of Norway spruce stands in Finland. Forestry 77(4):349–364CrossRefGoogle Scholar
  37. Marková I, Janouš D, Pavelka M, Macků J, Havránková K, Rejšek K, Marek MV (2016) Potential changes in Czech forest soil carbon stocks under different climate change scenarios. J For Sci 62:537–544CrossRefGoogle Scholar
  38. Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol Z 15(6):597–609CrossRefGoogle Scholar
  39. McDowell NG (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Chang 5:669–672CrossRefGoogle Scholar
  40. Michaelis L, Menten ML (1913) The kinetics of the inversion effect. Biochem Z 49:333–369Google Scholar
  41. Nadezhdina N, Urban J, Cermak J, Nadezhdin V, Kantor P (2014) Comparative study of long-term water uptake of Norway spruce and Douglas-fir in Moravian upland. J Hydrol Hydromech 62(1):1–6Google Scholar
  42. Nguyen NQ (2016) Anatomical, physiological and molecular responses of European beech (Fagus sylvatica L.) to drought. Dissertation. Georg-August-University of Göttingen, Göttingen, pp 1–119Google Scholar
  43. Panshin AJ, de Zeeuw C (1980) Textbook of wood technology: structure, identification, properties, and uses of the commercial woods of the United States and Canada, 4th edn. Mcgraw-Hill College, New York, pp 1–722Google Scholar
  44. Pingintha N, Leclerc MY, Beasley JP, Durden D, Zhang G, Senthong C, Rowland D (2010) Hysteresis response of daytime net ecosystem exchange during drought. Biogeosciences 7:1159–1170CrossRefGoogle Scholar
  45. Pretzsch H, Schütze G, Uhl E (2013) Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol 15:483–495CrossRefPubMedGoogle Scholar
  46. Pretzsch H, Rotzer T, Matyssek R, Grams TEE, Haberle KH, Pritsch K, Kerner R, Munch JC (2014) Mixed Norway spruce (Picea abies [L.] Karst) and European beech (Fagus sylvatica [L.]) stands under drought: from reaction pattern to mechanism. Trees 28(5):1305–1321CrossRefGoogle Scholar
  47. Pretzsch H, del Rio M, Ammer C et al (2015) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134:927–947CrossRefGoogle Scholar
  48. Rabinowitch EI (1951) Photosynthesis and related processes, vol II, Part 1, 1st edn. Interscience Publishers, New York, pp 1–608Google Scholar
  49. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11(9):1424–1439CrossRefGoogle Scholar
  50. Rouault G, Candau JN, Lieutier F, Nageleisen LM, Martin JC, Warzee N (2006) Effects of drought and heat on forest insect populations in relation to the 2003 drought in Western Europe. Ann For Sci 63:613–624CrossRefGoogle Scholar
  51. Spitters CJT, Toussaint HAJM, Goudriaan J (1986) Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis. Part I. Components of incoming radiation. Agric For Meteorol 38:217–229CrossRefGoogle Scholar
  52. Teuffel K, Heinrich B, Baumgarten M (2004) Present distribution of secondary Norway spruce in Europe. In: Spiecker H, Hansen J, Klimo E et al (eds) Norway spruce conversion—options and consequences. Brill, Boston, pp 63–96Google Scholar
  53. Trnka M, Muska F, Semeradova D, Dubrovsky M, Kocmankova E, Zalud Z (2007) European Corn Borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecol Modell 207:61–84CrossRefGoogle Scholar
  54. Úradníček L, Maděra P (2001) Dřeviny České republiky. Matice lesnická, Písek, pp 1–333Google Scholar
  55. Urban O, Klem K, Ac A, Havrankova K, Holisova P, Navratil M, Zitova M, Kozlova K, Pokorny R, Sprtova M, Tomaskova I, Spunda V, Grace J (2012) Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO2 uptake within a spruce canopy. Funct Ecol 26(1):46–55CrossRefGoogle Scholar
  56. van´t Hoff JH (1898) Part I. Chemical dynamics. In Lectures on theoretical and physical chemistry. London: Edward Arnold, pp 1–254Google Scholar
  57. Vicente-Serrano SM, Gouveia C, Camarero JJ et al (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA 110(1):52–57CrossRefPubMedGoogle Scholar
  58. Zang C, Rothe A, Weis W, Pretzsch H (2011) Zur Baumarteneignung bei Klimawandel: ableitung der Trockenstress-Anfälligkeit wichtiger Waldbaumarten aus Jahrring-breiten. Allg For J Ztg 182:98–112Google Scholar
  59. Zlatanov T, Elkin C, Irauschek F, Lexer MJ (2017) Impact of climate change on vulnerability of forests and ecosystem service supply in Western Rhodopes Mountains. Reg Environ Change 17:79–91CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lenka Krupková
    • 1
  • Kateřina Havránková
    • 1
  • Jan Krejza
    • 1
  • Pavel Sedlák
    • 1
    • 2
  • Michal V. Marek
    • 1
  1. 1.Global Change Research InstituteCzech Academy of SciencesBrnoCzech Republic
  2. 2.Institute of Atmospheric PhysicsCzech Academy of SciencesPragueCzech Republic

Personalised recommendations