Skip to main content
Log in

Long-term charcoal-induced changes to soil properties in temperate regions of northern Iran

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

The long-term performance and benefits of charcoal application on the carbon sequestration and properties of forest soils in temperate or non-tropical regions has not been studied in detail in spite of its important role in global warming. This study was conducted to describe the long-term charcoal-induced changes in organic carbon (OC) content and other soil properties of temperate deciduous forests in Mazandaran province, northern Iran. Three sites were sampled to collect composite soil samples from two depths (0–20 and 20–40 cm) inside and outside of a plot of charcoal-enriched soils surrounding a historical charcoal production site (abandoned for more than 120 years). The presence of charcoal in soils for about 120 years elevated significantly the black carbon, total OC, natural soil OC, total nitrogen, dissolved organic matter, soil OC density, exchangeable bases, saturated hydraulic conductivity, available water capacity and available Fe, Mn and Zn compared to the adjacent reference soils. Cation exchange capacity (CEC) and pH were 15.5 cmolc kg−1 and 0.5 units, respectively, higher than the adjacent reference soils at 0–20 cm soil depth. However, electrical conductivity (EC), bulk density and available Cu were higher in the adjacent reference soil. The aged charcoal had no significant effect on the microbial respiration rate of studied soils. The results of this study provide new insights and strong support for the long-term benefits of biochar application as a management strategy for improving soil productivity as well as sequestering large quantities of durable carbon in soils of the region and mitigating global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry. Academic Press, London

    Google Scholar 

  • Araujo SR, Söderström M, Eriksson J, Isendahl C, Stenborg P, Demattê JM (2015) Determining soil properties in Amazonian Dark Earths by reflectance spectroscopy. Geoderma 237:308–317

    Article  CAS  Google Scholar 

  • Bayabil HK, Stoof CR, Lehmann JC, Yitaferu B, Steenhuis TS (2015) Assessing the potential of biochar and charcoal to improve soil hydraulic properties in the humid Ethiopian Highlands: the Anjeni watershed. Geoderma 243:115–123

    Article  CAS  Google Scholar 

  • Borchard N, Ladd B, Eschemann S, Hegenberg D, Möseler BM, Amelung W (2014) Black carbon and soil properties at historical charcoal production sites in Germany. Geoderma 232:236–242

    Article  CAS  Google Scholar 

  • Brodowski S, Rodionov A, Haumaier L, Glaser B, Amelung W (2005) Revised black carbon assessment using benzene polycarboxylic acids. Org Geochem 36:1299–1310

    Article  CAS  Google Scholar 

  • Brodowski S, John B, Flessa H, Amelung W (2006) Aggregate-occluded black carbon in soil. Eur J Soil Sci 57:539–546

    Article  Google Scholar 

  • Castaldi S, Riondino M, Baronti S, Esposito F, Marzaioli R, Rutigliano F, Vaccari F, Miglietta F (2011) Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere 85:1464–1471

    Article  CAS  PubMed  Google Scholar 

  • Cayuela M, Van Zwieten L, Singh B, Jeffery S, Roig A, Sánchez-Monedero M (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16

    Article  CAS  Google Scholar 

  • Chapman HD (1965) Cation exchange capacity. In: Black CA (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 891–901

    Google Scholar 

  • DeLuca TH, Gundale MJ, MacKenzie MD, Jones DL (2015) Biochar effects on soil nutrient transformations. In: Joseph S (ed) Biochar for Environmental Management: Science and Technology. Earthscan Ltd, Routledge, pp 251–270

    Google Scholar 

  • Dexter AR (1988) Advances in characterization of soil structure. Soil Tillage Res 11:199–238

    Article  Google Scholar 

  • Downie AE, Van Zwieten L, Smernik RJ, Morris S, Munroe PR (2011) Terra Preta Australis: reassessing the carbon storage capacity of temperate soils. Agric Ecosyst Environ 140:137–147

    Article  Google Scholar 

  • Emadi M, Baghernejad M, Memarian HR (2009) Effect of land-use change on soil fertility characteristics within water-stable aggregates of two cultivated soils in northern Iran. Land Use Policy 26:452–457

    Article  Google Scholar 

  • Emadi M, Baghernejad M, Bahmanyar MA, Morovvat A (2012) Changes in soil inorganic phosphorous pools along a precipitation gradient in northern Iran. Int J For Soil Eros 2:143–147

    Google Scholar 

  • Falcao N, Clement C, Tsai S, Comerford N (2009) Pedology, fertility, and biology of central Amazonian Dark Earths. In: Sombroek W (ed) Amazonian Dark Earths. Springer, Amsterdam, pp 213–228

    Chapter  Google Scholar 

  • Fraser JA, Clement CR (2008) Dark Earths and manioc cultivation in Central Amazonia: a window on pre-Columbian agricultural systems? Bol Mus Para Emílio Goeldi Ciênc Hum 3:175–194

    Article  Google Scholar 

  • Glaser B (2007) Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 362:187–196

    Article  CAS  PubMed  Google Scholar 

  • Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of Anthropogenic Dark Earths in Central Amazonia (terra preta de Índio). Geochim Cosmochim Acta 82:39–51

    Article  CAS  Google Scholar 

  • Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669–678

    Article  CAS  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The’Terra Preta’phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  CAS  PubMed  Google Scholar 

  • Goldberg E (1985) Black carbon in the environment. Wiley, New York, p 198

    Google Scholar 

  • Gómez-Luna BE, Rivera-Mosqueda MC, Dendooven L, Vázquez-Marrufo G, Olalde-Portugal V (2009) Charcoal production at kiln sites affects C and N dynamics and associated soil microorganisms in Quercus spp. temperate forests of central Mexico. Appl Soil Ecol 41:50–58

    Article  Google Scholar 

  • Hardy B, Dufey JE, Cornelis JT (2014) Former charcoal kiln sites where forest was cleared for cultivation: a case study of old biochar in cropland. In: Proceedings of the EGU General Assembly Conference. http://adsabs.harvard.edu/abs/2014EGUGA.16.2561H. Accessed 28 May 2017

  • Hardy B, Cornelis JT, Houben D, Lambert R, Dufey J (2016) The effect of pre-industrial charcoal kilns on chemical properties of forest soil of Wallonia, Belgium. Eur J Soil Sci 67:206–216

    Article  CAS  Google Scholar 

  • Heitkotter J, Marschner B (2015) Interactive effects of biochar ageing in soils related to feedstock, pyrolysis temperature, and historic charcoal production. Geoderma 245:56–64

    Article  CAS  Google Scholar 

  • Hernandez-Soriano MC, Kerré B, Goos P, Hardy B, Dufey J, Smolders E (2016) Long-term effect of biochar on the stabilization of recent carbon: soils with historical inputs of charcoal. Glob Chang Biol 8:371–381

    Article  CAS  Google Scholar 

  • Kaal J, Nierop KG, Kraal P, Preston CM (2012) A first step towards identification of tannin-derived black carbon: conventional pyrolysis (Py–GC–MS) and thermally assisted hydrolysis and methylation (THM–GC–MS) of charred condensed tannins. Org Geochem 47:99–108

    Article  CAS  Google Scholar 

  • Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH 4 uptake and water holding capacity—results from a short-term pilot field study. Agric Ecosyst Environ 140:309–313

    Article  CAS  Google Scholar 

  • Keiluweit M, Nico PS, Johnson MG, Kleber M (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol 44:1247–1253

    Article  CAS  PubMed  Google Scholar 

  • Kleber M, Sollins P, Sutton R (2007) A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry 85:9–24

    Article  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14 C labeling. Soil Biol Biochem 41:210–219

    Article  CAS  Google Scholar 

  • Lehmann J, Rondon M (2006) Biochar soil management on highly weathered soils in the humid tropics. In: Uphoff N (ed) Biological approaches to sustainable soil systems. CRC Press, Boca Raton, pp 517–530

    Chapter  Google Scholar 

  • Lehmann J, Sohi S (2008) Comment on “fire-derived charcoal causes loss of forest humus”. Science 321:1295–1296

    Article  CAS  PubMed  Google Scholar 

  • Lehmann J, Kern DC, Glaser B, Woods WI (2007) Amazonian dark earths: origin properties management. Springer, Amsterdam, p 505

    Google Scholar 

  • Lehmann J, Skjemstad J, Sohi S, Carter J, Barson M, Falloon P, Coleman K, Woodbury P, Krull E (2008) Australian climate–carbon cycle feedback reduced by soil black carbon. Nat Geosci 1:832–835

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’neill B, Skjemstad J, Thies J, Luizao F, Petersen J (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Luizao FJ, Engelhard MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in soils. Geochim Cosmochim Acta 72:6069–6078

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41:206–213

    Article  CAS  Google Scholar 

  • Lin Y, Munroe P, Joseph S, Henderson R, Ziolkowski A (2012) Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87:151–157

    Article  CAS  PubMed  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • McBeath AV, Smernik RJ, Schneider MP, Schmidt MW, Plant EL (2011) Determination of the aromaticity and the degree of aromatic condensation of a thermosequence of wood charcoal using NMR. Org Geochem 42:1194–1202

    Article  CAS  Google Scholar 

  • McGill W, Figueiredo C (1993) Total nitrogen. In: Carter M (ed) Soil sampling and methods of analysis. Lewis Publications, Boca Raton, pp 201–211

    Google Scholar 

  • Mikan CJ, Abrams MD (1995) Altered forest composition and soil properties of historic charcoal hearths in southeastern Pennsylvania. Can J For Res 25:687–696

    Article  Google Scholar 

  • Mukherjee A, Lal R, Zimmerman A (2014) Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci Total Environ 487:26–36

    Article  CAS  PubMed  Google Scholar 

  • Oguntunde PG, Fosu M, Ajayi AE, Van De Giesen N (2004) Effects of charcoal production on maize yield, chemical properties and texture of soil. Biol Fert Soil 39:295–299

    Article  CAS  Google Scholar 

  • Olsen S, Cole C, Watanabe F, Dean L (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA, Circular No 939, US Gov. Print. Office, Washington, D.C.

  • Petersen JB, Neves EG, Heckenberger MJ (2001) Gift from the past: terra preta and prehistoric Amerindian occupation in Amazonia. In: Colin M, Christina B, Eduardo N (eds) Unknown Amazon: culture in nature in ancient. British Museum Press, London, pp 86–107

    Google Scholar 

  • Pignatello JJ, Kwon S, Lu Y (2006) Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): attenuation of surface activity by humic and fulvic acids. Environ Sci Technol 40:7757–7763

    Article  CAS  PubMed  Google Scholar 

  • Qayyum MF (2012) Possibilities to stabilize organic matter in soil using various biochars. giessen.de/geb/volltexte/2012/8764/pdf/QayyumFarooqMuhammad_2012_05_23.pdf. Accessed 28 May 2017

  • Qiu Y, Xiao X, Cheng H, Zhou Z, Sheng GD (2009) Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter. Environ Sci Technol 43:4973–4978

    Article  CAS  PubMed  Google Scholar 

  • Rhoades J, Manteghi NA, Shouse P, Alves W (1989) Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Sci Soc Am J 53:428–433

    Article  Google Scholar 

  • Rumpel C, Alexis M, Chabbi A, Chaplot V, Rasse DP, Valentin C, Mariotti A (2006) Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma 130:35–46

    Article  CAS  Google Scholar 

  • Salek-Gilani S, Raiesi F, Tahmasebi P, Ghorbani N (2013) Soil organic matter in restored rangelands following cessation of rainfed cropping in a mountainous semi-arid landscape. Nutr Cycl Agroecosyst 96:215–232

    Article  CAS  Google Scholar 

  • Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils, No. 60. USDA-NRCS, Washington, DC

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, DC

  • Soinne H, Hovi J, Tammeorg P, Turtola E (2014) Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 219:162–167

    Article  CAS  Google Scholar 

  • Somebroek W (1993) Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio 22:417–426

    Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macêdo JLV, Blum WE, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291:275–290

    Article  CAS  Google Scholar 

  • Stolz C, Böhnke S, Grunert J (2012) Reconstructing 2500 years of land use history on the Kemel Heath (Kemeler Heide), southern Rhenish Massif, Germany. Quat Sci J 61(2):169–183

    Google Scholar 

  • Uchimiya M, Ohno T, He Z (2013) Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes. J Anal Appl Pyrolysis 104:84–94

    Article  CAS  Google Scholar 

  • USDA and NRCS (2007) Statistix and user gide for the plant material program, 2007, version 2, pp 1–8

  • Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320:629

    Article  CAS  Google Scholar 

  • Wiedner K, Schneeweiß J, Dippold MA, Glaser B (2015) Anthropogenic dark earth in Northern Germany—the Nordic Analogue to terra preta de Índio in Amazonia. CATENA 132:114–125

    Article  CAS  Google Scholar 

  • Wilson CA, Davidson DA, Cresser MS (2008) Multi-element soil analysis: an assessment of its potential as an aid to archaeological interpretation. J Archaeo Sci 35:412–424

    Article  Google Scholar 

  • WRB (2014) World reference base for soil resources. World Soil Resources Report, 106. FAO, Rome, p 181

  • Young M, Johnson J, Abrams M (1996) Vegetative and edaphic characteristics on relic charcoal hearths in the Appalachian Mountains. Vegetation 125:43–50

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sari University of Agricultural Sciences and Natural Resources, Iran, for their financial and other supports. The authors are grateful to anonymous reviewers and Deputy Editor-in-Chief, Dr Ruihai Chai, for their critical comments and suggestions that greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Emadi.

Additional information

Project funding: The present study was supported by Sari University of Agricultural Sciences and Natural Resources, Mazandaran province, Iran.

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faghih, F., Emadi, M., Sadegh-Zadeh, F. et al. Long-term charcoal-induced changes to soil properties in temperate regions of northern Iran. J. For. Res. 30, 1063–1071 (2019). https://doi.org/10.1007/s11676-018-0641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-018-0641-6

Keywords

Navigation