Distribution and variability of n-alkanes in waxes of conifers

  • Mohamad Hassanzadeh-Khayyat
  • Maryam Akaberi
  • Hamideh Moalemzadeh Haghighi
  • Amirhossein Sahebkar
  • Seyed Ahmad Emami
Original Paper
  • 19 Downloads

Abstract

Epicuticular waxes have vital roles in the growth and development of plants and in defense. Conifers have a considerable amount of waxes on their cones and leaves. Here we characterized the n-alkane composition of Iranian conifers, including Juniperus oblonga, J. foetidissima, J. sabina, J. communis subsp. hemisphaerica, J. excelsa, Cupressus sempervirens, Platycladus orientalis from Cupressaceae and Taxus baccata from Taxaceae for the first time using GC-FID analyses. In the waxes, 25 n-alkane homologs with chain lengths ranging from C7 to C32 were identified. Short-chain n-alkanes were dominant in almost all samples with some exceptions. Complementary studies to elucidate complete wax constituents of Iranian conifers and n-alkane distribution pattern as a function of geographical and bioclimatic variables are recommended.

Keywords

Gymnosperms Iranian conifers Epicuticular waxes Cupressaceae Taxaceae 

Notes

Acknowledgements

The authors acknowledge their gratitude to the authorities of the Mashhad University of Medical Sciences for financial support of this study.

Supplementary material

11676_2018_639_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 41 kb)

References

  1. Adams PA (2004) Juniperus of the World: The genus Juniperus. Canada, Vancouver: Trafford Publishing Co. 6E-2333 Government St., Victoria, BC. V8T 4P4, pp 85–86, 108–109, 113, 151–154, 162–164Google Scholar
  2. Afsharzadeh M, Naderinasab M, Najaran ZT, Barzin M, Emami SA (2013) In-vitro antimicrobial activities of some Iranian conifers. Iran J Pharm Res 12(1):63–74PubMedPubMedCentralGoogle Scholar
  3. Anonymous (2007) PDR for Herbal Medicines, 4th edn. Thomson Healtcare Inc. at Montvale, NJ 07645-1725, pp 248–249, 485–488, 724–725, 926Google Scholar
  4. Asgary S, Naderi GA, Shams Ardekani MR, Sahebkar A, Airin A, Aslani S, Kasher T, Emami SA (2013a) Chemical analysis and biological activities of Cupressus sempervirens var. horizontalis essential oils. Pharm Biol 51(2):137–144CrossRefPubMedGoogle Scholar
  5. Asgary S, Sahebkar A, Naderi GA, Ardekani MRS, Kasher T, Aslani S, Airin A, Emami SA (2013b) Essential oils from the fruits and leaves of Juniperus sabina possess inhibitory activity against protein glycation and oxidative stress: an in vitro phytochemical investigation. J Essent Oil Res 25(1):70–77CrossRefGoogle Scholar
  6. Asgary S, Naderi GA, Shams Ardekani MR, Sahebkar A, Airin A, Aslani S, Kasher T, Emami SA (2014) Inhibition of protein glycation by essential oils of branchlets and fruits of Juniperus communis subsp. hemisphaerica. Res Pharm Sci 9(3):179–185PubMedPubMedCentralGoogle Scholar
  7. Asili J, Emami SA, Rahimizadeh M, Fazly-Bazzaz BS, Hassanzadeh MK (2008) Chemical and antimicrobial studies of Juniperus excelsa subsp. excelsa and Juniperus excelsa subsp. polycarpos essential oils. J Essent Oil Bear Plant 11(3):292–302CrossRefGoogle Scholar
  8. Asili J, Emami SA, Rahimizadeh M, Fazly-Bazzaz BS, Hassanzadeh MK (2010) Chemical and antimicrobial studies of Juniperus sabina L and Juniperus foetidissima Willd. essential oils. J Essent Oil Bear Plant 13(1):25–36CrossRefGoogle Scholar
  9. Asili J, Emami SA, Seddigh N, Khayyt MH (2013) The antioxidant activity of the essential oil of different parts of Juniperus foetidissima Willd. in lipid system. Anal Chem Let 3(1):18–29CrossRefGoogle Scholar
  10. Bush RT, McInerney FA (2013) Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta 117:161–179CrossRefGoogle Scholar
  11. Debreczy Z, Racz I (2011) Conifers around the World: conifers of the temperate zones and adjacent regions. DendroPress, Budapest, pp 1–23Google Scholar
  12. Diefendorf AF, Leslie AB, Wing SL (2015) Leaf wax composition and carbon isotopes vary among major conifer groups. Geochim Cosmochim Acta 170:145–156CrossRefGoogle Scholar
  13. Dodd RS, Poveda MM (2003) Environmental gradients and population divergence contribute to variation in cuticular wax composition in Juniperus communis. Biochem Syst Ecol 31(11):1257–1270CrossRefGoogle Scholar
  14. Emami SA, Sadeghi-Aliabadi H, Saeidi M, Jafarian A (2005) Cytotoxic evaluations of Iranian conifers on cancer cells. Pharm Biol 43(4):299–304CrossRefPubMedGoogle Scholar
  15. Emami SA, Asili J, Rahimizadeh M, Fazly Bazzaz BS, Hassanzadeh MK (2006) Chemical and antimicrobial studies of Cupressus sempervirens L. and C. horizentalis Mill. essential oils. Iranian. J Pharm Sci 2(2):103–108Google Scholar
  16. Emami SA, Asili J, Mohagheghi Z, Hassanzadeh MK (2007a) Antioxidant activity of leaves and fruits of Iranian conifers. Evid Based Complement Altern Med 4(3):313–319CrossRefGoogle Scholar
  17. Emami SA, Javadi B, Hassanzadeh MK (2007b) Antioxidant activity of the essential oils of different parts of Juniperus communis subsp. hemisphaerica and Juniperus oblonga. Pharm Biol 45(10):769–776CrossRefGoogle Scholar
  18. Emami SA, Afsharypuor S, Asili J, Sairafianpour M (2010) Chemical composition of the essential oils from Iranian conifers. Part I: Aroma profiles of leaves and fruits of Juniperus polycarpos var. polycarpos (Cupressaceae). J Essent Oil Res 22(2):103–106CrossRefGoogle Scholar
  19. Emami SA, Abedindo BF, Hassanzadeh-Khayyat M (2011) Antioxidant activity of the essential oils of different parts of Juniperus excelsa M. Bieb. subsp. excelsa and J. excelsa M. Bieb. subsp. polycarpos (K. Koch) Takhtajan (Cupressaceae). Iran J Pharm Res 10(4):799–810PubMedPubMedCentralGoogle Scholar
  20. Emami SA, Asgary S, Naderi GA, Ardekani MRS, Aslani S, Airin A, Kasher T, Sahebkar A (2012) Investigation of antioxidant and anti-glycation properties of essential oils from fruits and branchlets of Juniperus oblonga. Braz J Pharamacogn 22(5):985–993CrossRefGoogle Scholar
  21. Emami SA, Shahani A, Khayyat MH (2013) Antioxidant activity of leaves and fruits of cultivated conifers in Iran. Jundishapur J Nat Pharm Prod 8(3):113–117CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hassanzadeh MK, Rahimizadeh M, Fazly Bazzaz BS, Emami SA, Assili J (2001) Chemical and antimicrobial studies of Platycladus orientalis essential oils. Pharm Biol 39(5):388–390CrossRefGoogle Scholar
  23. Jetter R, Klinger A, Schäffer S (2002) Very long-chain phenylpropyl and phenylbutyl esters from Taxus baccata needle cuticular waxes. Phytochemistry 61(5):579–587CrossRefPubMedGoogle Scholar
  24. Piovetti L, Yani A, Combaut G, Diara A (1981) Waxes of Cupressus dupreziana and Cupressus sempervirens. Phytochemistry 20(5):1135–1136CrossRefGoogle Scholar
  25. Poveda MM, Souqual MC, Fauvel MT, Gamisans J, Gauquelin T (2002) Alkane composition diversity among populations of dwarf forms of Juniperus communis L.: Comparison between western Europe and northern American populations. Bot J Linn Soc 140(2):165–168CrossRefGoogle Scholar
  26. Rajcevic N, Janackovic P, Dodos T, Tesevic V, Marin PD (2014) Biogeographic variation of foliar n-alkanes of Juniperus communis var. saxatilis Pallas from the Balkans. Chem Biodivers 11(12):1923–1938CrossRefPubMedGoogle Scholar
  27. Sadeghi-aliabadi H, Jafarian A, Fatemi SA, Shahidi G, Emami SA (2007) Evaluation of some Iranian conifers extracts cytotoxicity, using Sacharomyces cerevisiae, RS 322N and RS 188N. Res Pharm Sci 2:66–72Google Scholar
  28. Sadeghi-aliabadi H, Emami A, Saidi M, Sadeghi B, Jafarian A (2009) Evaluation of in vitro cytotoxic effects of Juniperus foetidissima and Juniperus sabina extracts against a panel of cancer cells. Iran J Pharm Res 8(4):281–286Google Scholar
  29. Sadeghi-aliabadi H, Emami SA, Saeidi M, Jafarian A (2010) Cytotoxic effects of the extracts of Iranian Taxus baccata and Cupressus horizentalis on cancer cells. Iran J Pharm Res 2(2):107–110Google Scholar
  30. Schäfer IK, Bliedtner M, Wolf D, Faust D, Zech R (2016) Evidence for humid conditions during the last glacial from leaf wax patterns in the loess-paleosol sequence El Paraíso, Central Spain. Quat Int 407:64–73CrossRefGoogle Scholar
  31. Schimmelmann A, Lewan MD, Wintsch RP (1999) D/H isotope ratios of kerogen, bitumen, oil, and water in hydrous pyrolysis of source rocks containing kerogen types I, II, IIS, and III. Geochim Cosmochim Acta 63(22):3751–3766CrossRefGoogle Scholar
  32. Tinto WF, Elufioye TO, Roach J (2017) Chapter 22-Waxes A2-Badal, Simone. In: Delgoda R (ed) Pharmacognosy. Academic Press, Boston, pp 443–445CrossRefGoogle Scholar
  33. Tulloch AP, Bergter L (1981) Epicuticular wax of Juniperus scopulorum. Phytochemistry 20(12):2711–2716CrossRefGoogle Scholar
  34. van Gelderen DM, van Hoey Smith (1992) Conifers, 2nd edn. 9999 SW Wilshire, Portland, Oregon 97225, USA: Timber Press, pp 11–14, 26–28Google Scholar
  35. Wen M, Jetter R (2007) Very-long-chain hydroxyaldehydes from the cuticular wax of Taxus baccata needles. Phytochemistry 68(20):2563–2569CrossRefPubMedGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mohamad Hassanzadeh-Khayyat
    • 1
  • Maryam Akaberi
    • 2
  • Hamideh Moalemzadeh Haghighi
    • 1
  • Amirhossein Sahebkar
    • 3
    • 4
    • 5
  • Seyed Ahmad Emami
    • 6
  1. 1.Pharmaceutical Research Centre, Department of Medicinal Chemistry, School of PharmacyMashhad University of Medical SciencesMashhadIran
  2. 2.Student Research Committee, Department of Pharmacognosy, School of PharmacyMashhad University of Medical SciencesMashhadIran
  3. 3.Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
  4. 4.Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
  5. 5.School of PharmacyMashhad University of Medical SciencesMashhadIran
  6. 6.Department of Pharmacognosy, School of PharmacyMashhad University of Medical SciencesMashhadIran

Personalised recommendations