Advertisement

Estimating soil moisture content using laboratory spectral data

  • Xiguang Yang
  • Ying Yu
  • Mingze Li
Original Paper

Abstract

Monitoring soil moisture is important for agriculture and forestry and plays an essential role in land surface processes as well as providing feedback among the earth’s surface ecosystems. Large-scale regional soil moisture spatial data can be obtained with a reliable and operational approach using remote sensing. In this paper, we provide an operational framework for retrieving soil moisture using laboratory spectral data. The inverted Gaussian function was used to fit soil spectral data, and its feature parameters, including absorption depth (AD) and absorption area (AA), were selected as variables for a soil moisture estimate model. There was a significant correlative relationship between soil moisture and AD, as well as AA near 1400 and 1900 nm. A one-variable linear regression model was established to estimate soil moisture. The model was evaluated using the determination coefficients (R2), root mean square error and average precision. Four models were established and evaluated in this study. The determination coefficients of the four models ranged from 0.794 to 0.845. The average accuracy for soil moisture estimates ranged from 90 to 92%. The results prove that it is feasible to estimate soil moisture using remote sensing technology.

Keywords

Absorption feature Hyperspectral Inverted Gaussian function Remote sensing 

Notes

Acknowledgements

We express our gratitude to Shaojie Han, who worked hard to collect field data. This work was sponsored by the National Natural Science Foundation of China (No. 31500519), the Fundamental Research Funds for the Central Universities (No. 2572017BA06) and the National Natural Science Foundation of China (No. 31500518, 31470640).

References

  1. Álvarez-Mozos J, Casalí J, González-Audícana M, Verhoest NEC (2005) Correlation between ground measured soil moisture and RADARSAT-1 derived backscattering coefficient over an agricultural catchment of navarre (North of Spain). Biosys Eng 92(1):119–133CrossRefGoogle Scholar
  2. Amani M, Parsian S, Mazloumi SM, Aieneh O (2016) Two new soil moisture indices based on the NIR-red triangle space of Landsat-8 data. Int J Appl Earth Obs Geoinf 50:176–186.  https://doi.org/10.1016/j.jag.2016.03.018 CrossRefGoogle Scholar
  3. Carlson TN, Gilles RR, Perry EM (1994) A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens Rev 9(1–2):161–173.  https://doi.org/10.1080/02757259409532220 CrossRefGoogle Scholar
  4. Carlson TN, Capehart WJ, Gillies RR (1995a) A new look at the simplified method for remote sensing of daily evapotranspiration. Remote Sens Environ 54(2):161–167.  https://doi.org/10.1016/0034-4257(95)00139-R CrossRefGoogle Scholar
  5. Carlson TN, Gilles RR, Schmugge TJ (1995b) An interpretation of methodologies for indirect measurement of soil water content. Agric For Meteorol 77(3):191–205.  https://doi.org/10.1016/0168-1923(95)02261-U CrossRefGoogle Scholar
  6. Chauhan NS, Miller S, Ardanuy P (2003) Spaceborne soil moisture estimation at high resolution: a microwave-optical/IR synergistic approach. Int J Remote Sens 24(22):4599–4622CrossRefGoogle Scholar
  7. Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res Atmos 89(NB7):6329–6340CrossRefGoogle Scholar
  8. De Lannoy GJM, Reichle RH, Pauwels VRN (2013) Global calibration of the GEOS-5 L-band microwave radiative transfer model over nonfrozen land using SMOS observations. J Hydrometeorol 14(3):765–785CrossRefGoogle Scholar
  9. Di L, Rundquist DC, Han L (1994) Modelling relationships between NDVI and precipitation during vegetative growth cycles. Int J Remote Sens 15(10):2121–2136.  https://doi.org/10.1080/01431169408954231 CrossRefGoogle Scholar
  10. Drake NA (1995) Reflectance spectra of evaporite minerals (400–2500 nm): applications for remote sensing. Int J Remote Sens 16(14):2555–2571CrossRefGoogle Scholar
  11. Dunne SC, Entekhabi D, Njoku EG (2007) Impact of multiresolution active and passive microwave measurements on soil moisture estimation using the ensemble Kalman smoother. IEEE Trans Geosci Remote Sens 45(4):1016–1028CrossRefGoogle Scholar
  12. Ghulam A, Qin Q, Teyip T, Li ZL (2007) Modified perpendicular drought index (MPDI): a real-time drought monitoring method. ISPRS J Photogramm Remote Sens 62(2):150–164.  https://doi.org/10.1016/j.isprsjprs.2007.03.002 CrossRefGoogle Scholar
  13. Gill MK, Kemblowski MW, Mckee M (2007) Soil moisture data assimilation using support vector machines and ensemble Kalman filter 1. JAWRA J Am Water Resour Assoc 43(4):1004–1015CrossRefGoogle Scholar
  14. Gillies RR, Kustas WP, Humes KS (1997) A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface. Int J Remote Sens 18(15):3145–3166.  https://doi.org/10.1080/014311697217026 CrossRefGoogle Scholar
  15. Grayson RB, Western AW (1998) Towards areal estimation of soil water content from point measurements: time and space stability of mean response. J Hydrol 207(1–2):68–82CrossRefGoogle Scholar
  16. Hassan-Esfahani L, Torres-Rua A, Jensen A, McKee M (2015) Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sens 7(3):2627–2646.  https://doi.org/10.3390/rs70302627 CrossRefGoogle Scholar
  17. Jackson TJ, Chen D, Cosh M, Li F, Anderson M, Walthall C, Doriaswamy P, Hunt ER (2004) Vegetation water content mapping using Landsat data derived normalized difference water index for corn and soybeans. Remote Sens Environ 92(4):475–482.  https://doi.org/10.1016/j.rse.2003.10.021 CrossRefGoogle Scholar
  18. Jian J, Yang W, Jiang H, Wan X, Li Y, Peng L (2012) A model for retrieving soil moisture saturation with Landsat remotely sensed data. Int J Remote Sens 33(14):4553–4566.  https://doi.org/10.1080/01431161.2011.652313 CrossRefGoogle Scholar
  19. Kim SB, Moghaddam M, Tsang L, Burgin M, Xu X, Njoku EG (2014) Models of L-band radar backscattering coefficients over global terrain for soil moisture retrieval. IEEE Trans Geosci Remote Sens 52(2):1381–1396CrossRefGoogle Scholar
  20. Li B, Ti C, Zhao Y, Yan X (2016) Estimating soil moisture with landsat data and its application in extracting the spatial distribution of winter flooded paddies. Remote Sens 8(1):38–56.  https://doi.org/10.3390/rs8010038 CrossRefGoogle Scholar
  21. Liu W, Baret F, Gu X, Zhang B, Tong Q, Zheng L (2003) Evaluation of methods for soil surface moisture estimation from reflectance data. Int J Remote Sens 24(10):2069–2083.  https://doi.org/10.1080/01431160210163155 CrossRefGoogle Scholar
  22. Lobell DB, Asner GP (2002) Moisture effects on soil reflectance. Soil Sci Soc Am J 66(3):722–727.  https://doi.org/10.2136/sssaj2002.7220 CrossRefGoogle Scholar
  23. Merzouki A, Bannari A, Teillet PM, King DJ (2011) Statistical properties of soil moisture images derived from Radarsat-1 SAR data. Int J Remote Sens 32(19):5443–5460CrossRefGoogle Scholar
  24. Miller JR, Hare EW, Wu J (1990) Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model. Int J Remote Sens 11(10):1755–1773CrossRefGoogle Scholar
  25. Nolet C, Poortinga A, Roosjen P, Bartholomeus H, Ruessink G (2014) Measuring and modeling the effect of surface moisture on the spectral reflectance of coastal beach sand. PLoS ONE 9(11):e112151–e112151CrossRefPubMedPubMedCentralGoogle Scholar
  26. Notarnicola C, Angiulli M, Posa F (2006) Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas. IEEE Trans Geosci Remote Sens 44(4):925–935CrossRefGoogle Scholar
  27. Rahman MM, Moran MS, Thoma DP, Bryant R, Holifield Collins CD, Jackson T, Orr BJ, Tischler M (2008) Mapping surface roughness and soil moisture using multi-angle radar imagery without ancillary data. Remote Sens Environ 112(2):391–402CrossRefGoogle Scholar
  28. Rodríguez-Fernández NJ, Aires F, Richaume P, Kerr YH, Prigent C, Kolassa J, Cabot F, Jiménez C, Mahmoodi A, Drusch M (2015) Soil moisture retrieval using neural networks: application to SMOS. IEEE Trans Geosci Remote Sens 53(11):5991–6007CrossRefGoogle Scholar
  29. Schnur MT, Xie H, Wang X (2010) Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semi-arid region of southwestern USA. Ecol Inform 5(5):400–409.  https://doi.org/10.1016/j.ecoinf.2010.05.001 CrossRefGoogle Scholar
  30. Shepherd A, McGinn SM, Wyseure GCL (2002) Simulation of the effect of water shortage on the yields of winter wheat in North-East England. Ecol Model 147(1):41–52.  https://doi.org/10.1016/S0304-3800(01)00405-7 CrossRefGoogle Scholar
  31. Sohrabinia M, Rack W, Zawar-Reza P (2012) Geostatistical analysis of surface temperature and in-situ soil moisture using LST time-series from MODIS. ISPRS Int Arch Photogram Remote Sens Spat Inf Sci XXXIX-B7:17–21CrossRefGoogle Scholar
  32. Song K, Zhou X, Fan Y (2009) Empirically adopted IEM for retrieval of soil moisture from radar backscattering coefficients. IEEE Trans Geosci Remote Sens 47(6):1662–1672CrossRefGoogle Scholar
  33. Vicente-Serrano SM, Pons-Fernández X, Cuadrat-Prats JM (2004) Mapping soil moisture in the central Ebro River Valley (Northeast Spain) with Landsat and NOAA satellite imagery: a comparison with meteorological data. Int J Remote Sens 25(20):4325–4350.  https://doi.org/10.1080/01431160410001712990 CrossRefGoogle Scholar
  34. Wang C, Qi J, Moran S, Marsett R (2004) Soil moisture estimation in a semiarid rangeland using ERS-2 and TM imagery. Remote Sens Environ 90(2):178–189CrossRefGoogle Scholar
  35. Weng Y, Gong P, Zhu Z (2008) Reflectance spectroscopy for the assessment of soil salt content in soils of the Yellow River Delta of China. Int J Remote Sens 29(19):5511–5531.  https://doi.org/10.1080/01431160801930248 CrossRefGoogle Scholar
  36. Western AW, Grayson RB, Blöschl G, Willgoose GR, Mcmahon TA (1999) Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour Res 35(3):797–810CrossRefGoogle Scholar
  37. Whiting ML, Ustin SL, Orueta AP, Li L (2005) Light absorption model for water content to improve soil mineral estimates in hyperspectral imagery. Pecora 16:23–27Google Scholar
  38. Yu F, Li HT, Jia Y, Han YS, Gu HY (2013) The Multi-level and multi-scale factor analysis for soil moisture information extraction by multi-source remote sensing data. ISPRS Int Arch Photogram Remote Sens Spat Inf Sci XL-7/W1(7):167–171CrossRefGoogle Scholar
  39. Zhan Z, Qin Q, Ghulan A, Wang D (2007) NIR-red spectral space based new method for soil moisture monitoring. Sci China Ser D Earth Sci 50(2):283–289CrossRefGoogle Scholar
  40. Zhang J, Zhou Z, Yao F, Yang L, Hao C (2015) Validating the modified perpendicular drought index in the north china region using in situ soil moisture measurement. IEEE Geosci Remote Sens Lett 12(3):542–546CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC)Northeast Forestry UniversityHarbinChina
  2. 2.Northeast Forestry UniversityHarbinChina

Personalised recommendations