Advertisement

Over expression of TaFer gene from Tamarix androssowii improves iron and drought tolerance in transgenic Populus tomentosa

  • Bo Zhao
  • Jingli Yang
  • Wenjing Yao
  • Boru Zhou
  • Wei Zheng
  • Tingbo Jiang
Original Paper
  • 48 Downloads

Abstract

Ferritin, a universal intracellular protein, can store large amounts of iron and improve plant resistance to abiotic and biotic stress. In this study, a ferritin gene (TaFer) from Tamarix androssowii Litv. was transferred into Populus tomentosa Carr. cv ‘BJR01’ via Agrobacterium. Six independent transgenic lines were obtained with a tolerance to kanamycin and three were randomly selected for further analysis. The PCR and RT-PCR results indicate that the TaFer gene had been integrated into the poplar genome. The effect of the gene on abiotic stress tolerance was tested, and the results show that transgenic plants improve growth, had higher chlorophyll and lower MDA contents, and higher relative electrical conductivity, fewer changes of SOD and POD activities, higher iron content, higher root ferric reductase activity and lower levels of ROS accumulation and cell death in response to drought, Fe-insufficient or Fe-excess tolerance. These results indicate that the TaFer gene can improve abiotic stress tolerance in transgenic Populus tomentosa.

Keywords

Tarmarix andnssowii Ferritin Iron Genetic transformation Stress resistance 

References

  1. Abadía J, Vázquez S, Rellán-Álvarez R, El-Jendoubi H, Abadía A, Álvarez-Fernández A, López-Millán AF (2011) Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem 49:471–482CrossRefPubMedGoogle Scholar
  2. Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290CrossRefGoogle Scholar
  3. Aisen P, Enns C, Wessling-Resnick M (2001) Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 33:940–959CrossRefPubMedGoogle Scholar
  4. Andrews SC, Harrison PM, Yewdall SJ, Arosio P, Levi S, Bottke W, von Darl M, Briat JF, Laulhère JP, Lobreaux S (1992) Structure, function, and evolution of ferritins. J Inorg Biochem 47:161–174CrossRefPubMedGoogle Scholar
  5. Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147CrossRefGoogle Scholar
  6. Bowler C, Montagu MV, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116CrossRefGoogle Scholar
  7. Briat JF (1996) Roles of ferritin in plants. J Plant Nutr 19:1331–1342CrossRefGoogle Scholar
  8. Briat JF (2002) Metal iron mediated oxidative stress and its control. In: Montagu M, Inzé D (eds) Oxidative stress in plants. Taylor and Francis, London, pp 171–189Google Scholar
  9. Briat JF, Fobis-Loisy I, Grignon N, Lobréaux S, Pascal N, Savino G, Thoiron S, von Wirén N, Van Wuytswinkel O (1995) Cellular and molecular aspects of iron metabolism in plants. Biol Cell 84:69–81CrossRefGoogle Scholar
  10. Briat JF, Duc C, Ravet K, Gaymard F (2009) Ferritins and iron storage in plants. Biochim Biophys Acta 1800:806–814CrossRefPubMedGoogle Scholar
  11. Chen Y, Barak P (1982) Iron nutrition of plants in calcareous soils. Adv Agron 135:217–240CrossRefGoogle Scholar
  12. Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206CrossRefPubMedGoogle Scholar
  13. Deák M, Horváth GV, Davletova S, Török K, Sass L, Vass I, Barna B, Király Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17(2):192–196CrossRefPubMedGoogle Scholar
  14. Du NX, Liu X, Li Y, Chen SY, Zhang JS, Ha D, Deng WG, Sun CK, Zhang YZ, Pijut PM (2012) Genetic transformation of Populustomentosa to improve salt tolerance. Plant Cell Tissue Organ Cult 108:181–189CrossRefGoogle Scholar
  15. Fridovich I (1995) Superoxide readical and superoxide dismutases. Annu Rev Biochem 64:250–272CrossRefGoogle Scholar
  16. Galaris D, Pantopoulos K (2008) Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci 45:1–23CrossRefPubMedGoogle Scholar
  17. Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing soyabean ferritin gene. Transgenic Res 7:173–180CrossRefGoogle Scholar
  18. Goto F, Yoshihara T, Masuda T, Takaiwa F (2001) Genetic improvement of iron content and stress adaptation in plants using ferritin gene. Biotechnol Genet Eng Rev 18:351–372CrossRefPubMedGoogle Scholar
  19. Guerinot ML (2007) It’s elementary: enhancing Fe3+ reduction improves rice yields. Proc Natl Acad Sci USA 104:7311–7312CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hegedüs A, Janda T, Horváth VG, Dudits D (2008) Accumulation of overproduced ferritin in the chloroplast provides protection against photoinhibition induced by low temperature in tobacco plants. J Plant Physiol 165:1647–1651CrossRefPubMedGoogle Scholar
  21. Hideg É, Török K, Šnyrychová I, Sándor G, Szegedi E, Horváth VG (2007) Response of ferritin over-expressing tobacco plants to oxidative stress, vol 91. Springer, Berlin, pp 1469–1472Google Scholar
  22. Horsch RB, Hoffmann NL, Eicholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231CrossRefGoogle Scholar
  23. Inzé D, Montagu MV (1995) Oxidative Stress in Plants. Curr Opin Biotechnol 6:153–158CrossRefGoogle Scholar
  24. Jiang TB, Ding BJ, Li FJ, Yang CP (2006) Differential expression of endogenous ferritin genes and iron homeostasis alteration in transgenic tobacco overexpressing soybean ferritin gene. Acta Genet Sin 33(12):1120–1126CrossRefPubMedGoogle Scholar
  25. Kangasjärvi S, Neukermans J, Li SC, Aro E-M, Noctor G (2012) Photosynthesis, photorespiration, and light signalling in defence responses. J Exp Bot 63:1619–1636CrossRefPubMedGoogle Scholar
  26. Kell DB (2009) Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genom 2:1–79CrossRefGoogle Scholar
  27. Koppenol WH (1993) The centennial of the Fenton reaction. Free Radic Biol Med 15:645–651CrossRefPubMedGoogle Scholar
  28. Laulhere JP, Briat JF (1993) Iron release and uptake by plant ferritin: effects of pH, reduction and chelation. Biochem J 290:693–696CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382CrossRefGoogle Scholar
  30. Majerus V, Bertin P, Lutts S (2007) Effects of iron toxicity on osmotic potential, osmolytes and polyamines concentrations in the African rice (Oryza glaberrima Steud.). Plant Sci 173(2):96–105CrossRefGoogle Scholar
  31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  32. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880Google Scholar
  33. Papanikolaou G, Pantopoulos K (2005) Iron metabolism and toxicity. Toxicol Appl Pharmacol 202:199–211CrossRefPubMedGoogle Scholar
  34. Peng XX, Yamauchi M (1993) Ethylene production in rice bronzing leaves induced by ferrous iron. Plant Soil 149:227–234CrossRefGoogle Scholar
  35. Peyret P, Perez P, Alric M (1995) Structure, genomic organization, and expression of the Arabidopsis thaliana aconitase gene. Plant aconitase show significant homology with mammalian iron-responsive element-binding protein. J Biol Chem 270:8131–8137CrossRefPubMedGoogle Scholar
  36. Proudhon D, Briat JF, Lescure AM (1989) Iron induction of ferritin synthesis in soybean cell suspensions. Plant Physiol 90:586–590CrossRefPubMedPubMedCentralGoogle Scholar
  37. Römheld V, Marschner H (1981) Iron deficiency stress induced morphological and physiological changes in root tips of sunflower. Physiol Plant 53:354–360CrossRefGoogle Scholar
  38. Römheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180CrossRefPubMedPubMedCentralGoogle Scholar
  39. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefPubMedPubMedCentralGoogle Scholar
  40. Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26CrossRefGoogle Scholar
  41. Shalata A, Tal M (1998) The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol Plant 104(2):167–174CrossRefGoogle Scholar
  42. Sijmons PC, Van den Briel W, Bienfait HF (1984) Cytosolic NADPH is the electron donor for extracellular FeIII reduction in iron-deficient bean roots. Plant Physiol 75:219–221CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sinha S, Gupta M, Chandra P (1997) Oxidative stress induced by iron in Hydrilla verticillata (l.f.) royle: response of antioxidants. Ecotoxicol Environ Saf 138:286–291CrossRefGoogle Scholar
  44. Skriver K, Mundy J (1990) Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2:503–512CrossRefPubMedPubMedCentralGoogle Scholar
  45. Spiller S, Kaufman LS, Thomsom WF, Briggs WR (1987) Specific mRNA and rRNA levels in greening pea leaves during recovery from iron stress. Plant Physiol 84:409–414CrossRefPubMedPubMedCentralGoogle Scholar
  46. Terry N, Abadía J (1986) Function of iron in chloroplasts. J Plant Nutr 9:609–646CrossRefGoogle Scholar
  47. Theil EC (2003) Ferritin: at the crossroads of iron and oxygen metabolism. J Nutr 133:1549S–1553SCrossRefPubMedGoogle Scholar
  48. Theil EC (2007) Coordinating responses to iron and oxygen stress with DNA and mRNA promoters: the ferritin story. Biometals 20:513–521CrossRefPubMedGoogle Scholar
  49. Van Wuytswinkel O, Vansuyt G, Grignon N, Fourcroy P, Briat JF (1998) Iron homeostasis alteration in transgenic tobacco overexpressing ferritin. Plant J 17(1):93–97CrossRefGoogle Scholar
  50. Vose PB (1982) Iron nutrition in plants: a word overview. J Plant Nutr 5:233–249CrossRefGoogle Scholar
  51. Wang YC, Jiang J, Zhao X, Liu GF, Yang CP, Zhan LP (2006) A novel lea gene from Tamarix androssowii confers drought tolerance in transgenic tobacco. Plant Sci 171:655–662CrossRefGoogle Scholar
  52. Yang GY, Wang YC, Xia DA, Gao CQ, Wang C, Yang CP (2014) Overexpression of a GST gene (ThGSTZ1) from Tamarix hispida improves drought and salinity tolerance by enhancing the ability to scavenge reactive oxygen species. Plant Cell Tissue Organ Cult 117:99–112CrossRefGoogle Scholar
  53. Yang JL, Chen Z, Wu SQ, CuiY ZL, Dong H, Yang CP, Li CH (2015) Overexpression of the Tamarix hispida ThMT3 gene increases copper tolerance and adventitious root induction in Salix matsudana Koidz. Plant Cell Tissue Organ Cult 121:469–479CrossRefGoogle Scholar
  54. Yi Y, Guerinot ML (1996) Genetic evidence that induction of root Fe (III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant J 10(5):835–844CrossRefPubMedGoogle Scholar
  55. Zhang TT, Song YZ, Liu YD, Guo XQ, Zhu CX, Wen FJ (2008) Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa. Chin Sci Bull 53:3656–3665CrossRefGoogle Scholar
  56. Zhang X, Wang L, Meng H, Wen HT, Fan YL, Zhao J (2011) Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species. Plant Mol Biol 75(4):365–378CrossRefPubMedPubMedCentralGoogle Scholar
  57. Zheng HQ, Lin SZ, Zhang Q, Lei Y, Hou L, Zhang ZY (2010) Functional identification and regulation of the PtDrl02 gene promoter from triploid white poplar. Plant Cell Rep 29:449–460CrossRefPubMedGoogle Scholar
  58. Zok A, Oláh R, Hideg É, Horváth VG, Kós PB, Majer P, Gy V, Szegedi E (2010) Effect of Medicago sativa ferritin gene on stress tolerance in transgenic grapevine. Plant Cell Tissue Organ Cult 100:339–344CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bo Zhao
    • 1
    • 2
  • Jingli Yang
    • 1
  • Wenjing Yao
    • 1
  • Boru Zhou
    • 1
  • Wei Zheng
    • 3
  • Tingbo Jiang
    • 1
  1. 1.State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinPeople’s Republic of China
  2. 2.Department of PharmacyHeilongjiang University of Chinese MedicineHarbinPeople’s Republic of China
  3. 3.Research Center on Life Sciences and Environmental SciencesHarbin University of CommerceHarbinPeople’s Republic of China

Personalised recommendations