Land cover changes and fragmentation in mountain neotropical ecosystems of Oaxaca, Mexico under community forest management

  • Rafael Mª Navarro Cerrillo
  • Dennis J. Esteves Vieira
  • Susana Ochoa-Gaona
  • Bernardus H. J. de Jong
  • Mª del Mar Delgado Serrano
Original Paper
  • 52 Downloads

Abstract

Changes in land cover have a direct impact on forest ecosystem goods and services. In this study, changes in land cover in Sierra de Juarez–Oaxaca ecosystems were estimated using a consistent processing of Landsat images and OBIA methodology. Additionally, landscape analyses using FRAGSTAT were conducted. In 2014, Sierra de Juarez–Oaxaca was covered by approximately 84% of forests, mainly pine-oak and cloud forests. After extensive deforestation until 2001, this trend was reversed and the forest cover surface area in 2014 was slightly higher than in 1979. The comparison of the landscape structure of the forested and agricultural lands suggests an increase in habitat heterogeneity. However, interspersion and juxtaposition indices, showing the patch shape by patch area and perimeter, were similar throughout the study period (1979–2014). Social and economic drivers can explain this situation: namely, community organization, forest enterprises, payment for ecosystem services programs, and changes of agricultural activity. Communities in the Sierra of Oaxaca have reforested degraded lands, created community forest enterprises, and preserved the forest under conservation schemes like those proposed by the Mexican payment for ecosystem services programs. However, their sustainable management faces internal challenges and has become highly dependent on political and institutional decisions beyond their control.

Keywords

Tropical and temperate forests Social forestry Land uses segmentation OBIA FRAGSTAT 

Notes

Acknowledgements

The authors would also like to thank the Comunidad de Oaxaca, for field data and cartographic support, and The National Land Centre of Mexico and the survey department of CONABIO for providing aerial photographs and topographic sheets. Rafael M. Navarro-Cerrillo acknowledges the financial support of the University of Cordoba-Campus de Excelencia CEIA3. MMDS acknowledges the support in the research tasks of the Jean Monnet Networks Project No. 564651-EPP-1-2015-1-SK- EPPJMO-NETWORK “Sustainable Land Management Network”. Additionally, we thank all the community leaders and farmers in Oaxaca for their collaboration.

Supplementary material

11676_2017_568_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. Achard F, Eva H, Stibig H, Mayaux P, Gallego J, Richards T, Malingreau J (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002CrossRefPubMedGoogle Scholar
  2. Agarwal C, Green G, Grove J, Evans T, Schweik C (2002) A review and assessment of land-use change models: dynamics of space, time, and human choice. Center for the Study of Institutions Population, and Environmental Change Indiana University, BloomingtonGoogle Scholar
  3. Aguilar-Vásquez Y, Aliphat Fernández M, Caso Barrera L, del Amo Rodríguez S, Sánchez Gómez M, Martínez-Carrera D (2014) Impact of traditionally managed forest units on the landscape connectivity of Sierra de Los Tuxtlas, Mexico. Rev Biol Trop 62(3):1099–1109CrossRefPubMedGoogle Scholar
  4. Benítez-Malvido J, Arroyo-Rodríguez V (2008) Habitat fragmentation, edge effects and biological corridors in tropical ecosystems. In: Del Claro K, Oliveira O, Rico-Gray V, Ramirez A, Almeida A, Bonet A, Scarano F, Consoli F, Morales F, Naoki J, Costello J, Sampaio M, Quesada M, Morris M, Palacios M, Ramirez N, Marcal O, Ferraz R, Marquis R, Parentoni R, Rodriguez R, Luttge U (eds) Encyclopedia of Life Support Systems (EOLSS). International Commission on Tropical Biology and Natural Resources. UNESCO, Eolss Publishers, OxfordGoogle Scholar
  5. Bennett A, Saunders D (2010) Habitat fragmentation and landscape change. Conserv Biol 93:1544–1550Google Scholar
  6. Beuchle R, Grecchi R, Shimabukuro Y, Seliger R, Eva H, Sano E, Achard F (2015) Land cover changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic remote sensing sampling approach. Appl Geogr 58:116–127CrossRefGoogle Scholar
  7. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm 65(1):2–16CrossRefGoogle Scholar
  8. Boege E (2008) El patrimonio biocultural de los pueblos indígenas de Mexico: hacia la conservación in situ de la biodiversidad y agrobiodiversidad en los territorios indígenas. INAH, MexicoGoogle Scholar
  9. Boucher D, Elias P, Lininger K, May-Tobin C, Roquemore S, Saxon E (2011) The root of the problem: what’s driving tropical deforestation today?. Union of Concerned Scientists, CambridgeGoogle Scholar
  10. Bray D, Merino-Perez L, Negreros-Castillo P, Segura-Warnholtz G, Torres-Rojo J, Vester H (2003) Mexico’s community-managed forests as a global model for sustainable landscapes. Conserv Biol 17:672–677CrossRefGoogle Scholar
  11. Cairns M, Haggerty P, Alvarez R, de Jong B, Olmsted I (2000) Tropical Mexico’s recent land-use change: a region’s contribution to the global carbon cycle. Ecol Appl 10:1426–1441CrossRefGoogle Scholar
  12. Caselles V, López Garcia M (1989) An alternative simple approach to estimate atmospheric correction in multitemporal studies. Int J Remote Sens 10:1127–1134CrossRefGoogle Scholar
  13. Challenger A, Dirzo R, López JC, Mendoza E, Lira-Noriega A, Cruz I (2009) Factores de cambio y estado de la biodiversidad. Cap Nat México 2:37–73Google Scholar
  14. Chander G, Markham B, Helder D (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+ , and EO-1 ALI sensors. Remote Sens Environ 113(5):893–903CrossRefGoogle Scholar
  15. Chapela F (1999) Emergencia de las organizaciones sociales de Oaxaca: la lucha por los recursos forestales. Alteridades 9(17):105–112Google Scholar
  16. Chipman J, Olmanson L, Gitelson A (2009) Remote Sensing Methods for Lake Management: a guide for resource managers and decision-makers. North American Lake Management Society-Dartmouth College, University of Minnesota, and University of Nebraska. United States Environmental Protection Agency, MadisonGoogle Scholar
  17. CONABIO (2009) Mexican Biodiversity. http://www.biodiversidad.gob.mx/v_ingles/country/pdf/naturalWealth.pdf. Accessed Feb 2014)
  18. CONAFOR (2012) La Comisión Nacional Forestal en la historia y el futuro de la política forestal de Mexico. Centro de Investigación y Docencia Económicas-Comisión Nacional Forestal, MexicoGoogle Scholar
  19. Dávila P, Torres L, Torres R, Herrera-MacBryde O (1997) Sierra de Juárez, Oaxaca, Mexico. In: Davis S, Heywood V, Herrera-MacBryde O, Villa-Lobos J, Hamilton A (eds) Centres of plant diversity: a guide and strategy for their conservation. The Americas. IUCN Publications Unit, Cambridge, pp 135–138Google Scholar
  20. Deikumah J, Mcalpine C, Maron M (2014) Biogeographical and taxonomic biases in tropical forest fragmentation research. Conserv Biol 28(6):1522–1531CrossRefPubMedGoogle Scholar
  21. Delgado-Serrano M, Escalante M, Basurto S (2015) Is the community-based management of natural resources inherently linked to resilience? An analysis of the Santiago Comaltepec community (Mexico). J Depop Rur Develop 18:91–114Google Scholar
  22. Ellis E, Porter-Bolland L (2008) Is community-based forest management more effective than protected areas? A comparison of land use/land cover change in two neighboring study areas of the Central Yucatan Peninsula, Mexico. For Ecol Manag 256(11):1971–1983CrossRefGoogle Scholar
  23. Escalante R, Basurto S, Cruz-Bayer A, Moreno E, Chapela F, Hernández I, Lara Y (2013) Stakeholder vision on problems and drivers related to environmental challenges in Mexico case study. COMET-LA Working Paper. http://www.comet-la.eu/index.php/en/publications.html
  24. ESRI (2006) ArcGIS 9.2. Environmental Systems Research Inst. ESRI, RedlandsGoogle Scholar
  25. Evans T, Costa M (2013) Landcover classification of the Lower Nhecolândia subregion of the Brazilian Pantanal Wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery. Remote Sens Environ 128:118–137CrossRefGoogle Scholar
  26. FAO (2014) State of the World’s Forests. Enhancing the socioeconomic benefits from forests. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  27. Ferrier S, Drielsma M (2010) Synthesis of pattern and process in biodiversity conservation assessment: a flexible whole—landscape modelling framework. Divers Distrib 16(3):386–402CrossRefGoogle Scholar
  28. Fischer J, Lindenmayer D, Manning A (2006) Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Front Ecol 4(2):80–86CrossRefGoogle Scholar
  29. Franklin A, Noon B, George T (2002) What is habitat fragmentation? Stud Avian Biol 25:20–29Google Scholar
  30. Gómez-Mendoza L, Vega-Peña E, Isabel Ramírez M, Palacio-Prieto J, Galicia L (2006) Projecting land-use change processes in the Sierra Norte of Oaxaca, Mexico. Appl Geogr 26:276–290CrossRefGoogle Scholar
  31. Gómez-Pompa A, Kaus A (1999) From pre-Hispanic to future conservation alternatives: lessons from Mexico. P Natl Acad Sci 96(11):5982–5986CrossRefGoogle Scholar
  32. González Ríos A (2011) Oaxaca 2011: Un Diagnóstico Breve. Grupo Mesófilo, A.C., OaxacaGoogle Scholar
  33. González-Espinosa M, Meave J, Ramírez-Marcial N, Toledo-Aceves T, Lorea-Hernández F, Ibarra-Manríquez G (2012) Los bosques de niebla de Mexico: conservación y restauración de su componente arbóreo. Ecosistemas 21(1–2):36–52Google Scholar
  34. Goodwin B, Fahrig L (2002) How does landscape structure influence landscape connectivity? Oikos 99:552–570CrossRefGoogle Scholar
  35. Green A, Berman M, Switzer P, Craig M (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE T Geosci Remote 26(1):65–74CrossRefGoogle Scholar
  36. Hansen M, Potapov P, Moore R, Hancher M, Turubanova S, Tyukavina A, Kommareddy A (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853CrossRefPubMedGoogle Scholar
  37. Hudgens B, Haddad N (2003) Predicting which species will benefit from corridors in fragmented landscapes from population growth models. Am Nat 161(5):808–820CrossRefPubMedGoogle Scholar
  38. Jenness J, Wynne J (2006) Kappa analysis extension for ArcView 3.x. (version 2.1). Jenness Enterprises, FlagstaffGoogle Scholar
  39. Jomaa I, Audab Y, Abi Salehc B, Hamze M, Safi S (2008) Landscape spatial dynamics over 38 years under natural and anthropogenic pressures in Mount Lebanon. Landsc Urban Plan 87(1):67–75CrossRefGoogle Scholar
  40. Kissinger G, Herold M, De Sy V (2012) Drivers of deforestation and forest degradation: A synthesis report for REDD+ policymakers. Lexeme Consulting, VancouverGoogle Scholar
  41. Klepeis P, Vance C (2003) Neoliberal policy and deforestation in southeastern Mexico: an assessment of the PROCAMPO program. Econ Geogr 79(3):221–240CrossRefGoogle Scholar
  42. Klooster D, Masera O (2000) Community forest management in Mexico: carbon mitigation and biodiversity conservation through rural development. Glob Environ Change 10:259–272CrossRefGoogle Scholar
  43. Laliberté E, Legendre P (2010) A distance—based framework for measuring functional diversity from multiple traits. Ecology 91(1):299–305CrossRefPubMedGoogle Scholar
  44. Li XX, Shao GF (2013) Object-based urban vegetation mapping with high-resolution aerial photography as a single data source. Int J Remote Sens 34(3):771–789CrossRefGoogle Scholar
  45. Lillesand T, Kiefer R, Chipman J (2014) Remote sensing and image interpretation. Wiley, New YorkGoogle Scholar
  46. Lu DS, Mausel P, Brondızio E, Moran E (2004) Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. For Ecol Manag 198(1):149–167CrossRefGoogle Scholar
  47. Mas J, Velázquez A, Díaz-Gallegos J, Mayorga-Saucedo R, Alcantara A, Bocco G, Castro R, Fernández T, Pérez-Vega A (2004) Assessing land use/cover changes: a nationalwide multidate spatial database for Mexico. Int J Appl Earth Obs 5:249–261CrossRefGoogle Scholar
  48. Masera O, Ordóñez M, Dirzo R (1997) Carbon emissions from Mexican forests: current situation and long-term scenarios. Clim Change 35(3):265–295CrossRefGoogle Scholar
  49. Matsushita B, Xu M, Fukushima T (2005) Characterizing the changes in landscape structure in the Lake Kasumigaura Basin, Japan using a high-quality GIS dataset. Landsc Urban Plan 78(3):241–250CrossRefGoogle Scholar
  50. Mayfield MM, Bonser SP, Morgan JW, Aubin I, McNamara S, Vesk PA (2010) What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Global Ecol Biogeogr 19:423–431Google Scholar
  51. McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12(2):335–345CrossRefGoogle Scholar
  52. McGarigal K, Marks B (1995) FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. USDA Forest Service General Technical Report PNW-351. Corvallis, Oregon, U.S.AGoogle Scholar
  53. Merino L, Martínez A (2014) A vuelo de pájaro: las condiciones de las comunidades con bosques templados en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, CONABIOGoogle Scholar
  54. Mitri G, Gitas I (2013) Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery. Int J Appl Earth Obs 20:60–66CrossRefGoogle Scholar
  55. Ochoa-Gaona S, González-Espinosa M, Meave JA, Sorani V (2004) Effect of forest fragmentation on the woody flora of the highlands of Chiapas, Mexico. Biodivers Conserv 13(5):867–884CrossRefGoogle Scholar
  56. Olivera G (2005) La reforma al artículo 27 Constitucional y la incorporación de las tierras ejidales al mercado legal de suelo urbano en Mexico. Scr Nova 9(194):1–33Google Scholar
  57. Olson D, Dinerstein E, Wikramanayake E, Burgess N, Powell G, Underwood E, Loucks C (2001) Terrestrial Ecoregions of the World: a New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51(11):933–938CrossRefGoogle Scholar
  58. Porter-Bolland L, Ellis EA, Guariguata MR, Ruiz-Mallén I, Negrete-Yankelevich S, Reyes-García V (2012) Community managed forests and forest protected areas: an assessment of their conservation effectiveness across the tropics. Forest Ecol Manag 268:6–17CrossRefGoogle Scholar
  59. Raši R, Bodart C, Stibig H, Eva H, Beuchle R, Carboni S, Simonetti D, Achard F (2011) An automated approach for segmenting and classifying a large sample of multi-date Landsat imagery for pan-tropical forest monitoring. Remote Sens Environ 115:3659–3669CrossRefGoogle Scholar
  60. Reyes-García V, Marti N, McDade T, Tanner S, Vadez V (2007) Concepts and methods in studies measuring individual ethnobotanical knowledge. J Ethnobiol 27(2):182–203CrossRefGoogle Scholar
  61. Rudel T, Roper J (1997) The paths to rain forest destruction: crossnational patterns of tropical deforestation, 1975–1990. World Dev 25(1):53–65CrossRefGoogle Scholar
  62. Sarukhán J, Urquiza-Haas T, Koleff P, Carabias J, Dirzo R, Ezcurra E, Cerdeira-Estrada S, Soberón J (2015) Strategic actions to value, conserve, and restore the natural capital of megadiversity countries: the case of Mexico. Bioscience 65:164–173CrossRefPubMedGoogle Scholar
  63. Saunders D, Hobbs R, Margules C (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5:18–32CrossRefGoogle Scholar
  64. Sebbenn A, Carvalho A, Freitas M, Moraes S, Gaino A, Da Silva J, Moraes M (2011) Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 106(1):134–145CrossRefPubMedGoogle Scholar
  65. Song C, Woodcock C, Seto K, Lenney M, Macomber S (2001) Classification and change detection using Landsat TM data: when and how to correct atmospheric effects? Remote Sens Environ 75(2):230–244CrossRefGoogle Scholar
  66. Strahler A, Boschetti L, Foody G, Fiedl M, Hansen M, Herold M, Mayaux P, Morisette J, Stehman S, Woodcock C (2006) Global land cover validation: recommendations for evaluation and accuracy assessment of global land cover maps. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  67. Toure S, Stow D, Shih HC, Coulter L, Weeks J, Engstrom R, Sandborn A (2016) An object-based temporal inversion approach to urban land use change analysis. Remote Sens Lett 7(5):503–512CrossRefGoogle Scholar
  68. Trejo I, Dirzo R (2000) Deforestation of seasonally dry tropical forest: a national and local analysis in Mexico. Biol Conserv 94(2):133–142CrossRefGoogle Scholar
  69. Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology: theory and practice. Springer, New York, p 482Google Scholar
  70. Velázquez A, Durán E, Ramírez I, Mas J, Bocco G, Ramírez G, Palacio J (2003) Land use-cover change processes in highly biodiverse areas: the case of Oaxaca, Mexico. Glob Environ Change 13:175–184CrossRefGoogle Scholar
  71. Vetter D, Hansbauer M, Végvári Z, Storch I (2011) Predictors of forest fragmentation sensitivity in Neotropical vertebrates: a quantitative review. Ecography 34(1):1–8CrossRefGoogle Scholar
  72. Vidal O, López-García J, Rendón-Salinas E (2014) Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conserv Biol 28:177–186CrossRefPubMedPubMedCentralGoogle Scholar
  73. Villaseñor J (2010) El bosque húmedo de montaña en Mexico y sus plantas vasculares: catálogo florístico-taxonómico. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad—Universidad Nacional Autónoma de Mexico, MexicoGoogle Scholar
  74. WRI (2011) Climate Analysis Indicators Tool (CAIT) version 8.0. URL: http://cait.wri.org/. Accessed Feb 2011)
  75. WWF (2007) Ecorregiones prioritarias. Sierra Norte de Oaxaca. World Wildlife Fund, Mexico DFGoogle Scholar
  76. Yang XJ, Lo CP (2011) Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. Int J Remote Sens 23(9):1775–1798CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rafael Mª Navarro Cerrillo
    • 1
  • Dennis J. Esteves Vieira
    • 2
  • Susana Ochoa-Gaona
    • 3
  • Bernardus H. J. de Jong
    • 3
  • Mª del Mar Delgado Serrano
    • 4
  1. 1.Depto. Ingeniería Forestal, Laboratorio de Selvicultura, Dendrocronología y Cambio Climático. DendrodatLab- ERSAFUniversidad de CórdobaCórdobaSpain
  2. 2.Depto. de Engenharia Florestal, Faculdade de Engenharia Florestal, Laboratório de Sensoriamento Remoto e GeotecnologiaUniversidade Federal de Mato GrossoCuiabáBrazil
  3. 3.Departamento de Ciencias de la SustentabilidadEl Colegio de la Frontera Sur-Unidad CampecheCampecheMexico
  4. 4.Depto. Economía, Sociología y Política Agrarias, Grupo de Evaluación y Restauración de Sistemas Agrícolas y Forestales- ERSAFUniversidad de CórdobaCórdobaSpain

Personalised recommendations