Skip to main content
Log in

Vegetation cover density and disturbance affected arbuscular mycorrhiza fungi spore density and root colonization in a dry Afromontane forest, northern Ethiopia

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhiza fungi (AMF) are vital in the regeneration of vegetation in disturbed ecosystems due to their numerous ecological advantages and therefore are good indicators of soil and ecosystem health at large. This study was aimed at determining how the seasonal, vegetation cover density, edaphic and anthropogenic factors affect AMF root colonization (RC) and spore density (SD) in Desa’a dry Afromontane forest. AMF RC and SD in the rhizosphere of five dominant woody species, Juniperus procera, Olea europaea, Maytenus arbutifolia, Carissa spinarum and Dodonaea angustifolia growing in Desa’a forest were studied during the rainy and the dry seasons in three permanent study vegetation cover density plots (dense, medium, and poor). Each plot (160 × 40 m2) has two management practices (fenced and unfenced plots) of area. A 100 g sample of rhizosphere soil from moisture-free composite soil was used to determine spore density. Spore density ranged from 50 to 4467 spores/100 g soil, and all species were colonized by AMF within a range of 4–95%. Glomus was the dominant genus in the rhizosphere of all species. Vegetation cover density strongly affected SD and RC. The SD was significantly higher (p < 0.05) in the poor vegetation cover density than in the other two and lowest in the dense cover; root colonization showed the reverse trend. Management practices significantly (p < 0.05) influenced AMF SD and RC, with the fenced plots being more favoured. Seasons significantly (p < 0.05) affected RC and SD. More RC and SD were observed in the wet period than the dry period. Correlating AMF SD and RC with soil physical and chemical properties showed no significant difference (p > 0.05) except for total nitrogen. Disturbance, vegetation cover density, season and total nitrogen are significant factors that control the dynamics and management interventions to maintain the forest health of dry Afromontane forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abubacker M, Visvanathan M, Srinivasan S (2014) Impact of pesticides on AMF spore population and diversity in banana (Musa spp.). Soils 2:1279–1286

    Google Scholar 

  • An GH, Miyakawa S, Kawahara A, Osaki M, Ezawa T (2008) Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulfate soils: habitat segregation along pH gradients. Soil Sci Plant Nutr 54:517–528

    Article  Google Scholar 

  • Ardestani NK, Zare-Maivan H, Ghanati F (2011) Effect of different concentrations of potassium and magnesium on mycorrhizal colonization of maize in pot culture. Afr J Biotech 10:16548–16550

    CAS  Google Scholar 

  • Aynekulu E, Denich M, Tsegaye D, Aerts R, Neuwirth B, Boehmer H (2011) Dieback affects forest structure in a dry Afromontane forest in northern Ethiopia. J Arid Environ 75:499–503

    Article  Google Scholar 

  • Babikova Z, Gilbert L, Bruce TJ, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  PubMed  Google Scholar 

  • Bago B, Cano C, Azcón-Aguilar C, Samson J, Coughlan AP, Piché Y (2004) Differential morphogenesis of the extraradical mycelium of an arbuscular mycorrhizal fungus grown monoxenically on spatially heterogeneous culture media. Mycologia 96:452–462

    Article  PubMed  Google Scholar 

  • Belay Z, Vestberg M, Assefa F (2013) Diversity and abundance of arbuscular mycorrhizal fungi associated with acacia trees from different land use systems in Ethiopia. Afr J Microbiol Res 7:5503–5515

    Article  Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J Ecol 84:71–82

    Article  Google Scholar 

  • Birhane E, Kuyper TW, Sterck FJ, Bongers F (2010) Arbuscular mycorrhizal associations in Boswellia papyrifera (frankincense-tree) dominated dry deciduous woodlands of Northern Ethiopia. For Ecol Manage 260:2160–2169

    Article  Google Scholar 

  • Boddington C, Dodd J (2000) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. II. Studies in experimental microcosms. Plant Soil 218:145–157

    Article  CAS  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy/Soil Science Society of America, Wisconsin/Madison, pp 595–624

    Google Scholar 

  • Brundrett M, Melville L, Peterson L (eds) (1994) Practical methods in mycorrhiza research. Mycologue Publication of University of Guelph, Guelph, pp 161–174

    Google Scholar 

  • Bundrett M, Ashwath N, Jasper D (1996) Mycorrhizas in the Kakadu region of tropical Australia. Plant Soil 184:173–184

    Article  CAS  Google Scholar 

  • Burni T, Hussain F, Sharief M (2011) Arbuscular mycorrhizal fungi (amf) associated with the rhizosphere of Mentha arvensis l., and M. longifolia huds. Pak J Bot 43:3013–3019

    Google Scholar 

  • Carrenho R, Trufem SFB, Bononi VLR, Silva ES (2007) The effect of different soil properties on arbuscular mycorrhizal colonization of peanuts, sorghum and maize. Acta Bot Bras 21:723–730

    Article  Google Scholar 

  • Chun OK, Kim DO, Lee CY (2003) Superoxide radical scavenging activity of the major polyphenols in fresh plums. J Agric Food Chem 51:8067–8072

    Article  CAS  PubMed  Google Scholar 

  • Das P, Kayang H (2008) Stamp pad ink, an effective stain for observing arbuscular mycorrhizal structure in roots. World J Agric Sci 4:58–60

    Google Scholar 

  • Deepak V, Vyas R, Giri V, Karanth KP (2015) A taxonomic mystery for more than 180 years: the identity and systematic position of Brachysaura minor. Vertebr Zool 65:371–381

    Google Scholar 

  • Drigo B, Pijl AS, Duyts H, Kielak AM, Gamper HA, Houtekamer MJ, Boschker HT, Bodelier PL, Whiteley AS, van Veen JA (2010) Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc Natl Acad Sci 107:10938–10942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Article  Google Scholar 

  • Eyles A, Bonello P, Ganley R, Mohammed C (2010) Induced resistance to pests and pathogens in trees. New Phytol 185:893–908

    Article  PubMed  Google Scholar 

  • Gai J, Feng G, Cai X, Christie P, Li X (2006) A preliminary survey of the arbuscular mycorrhizal status of grassland plants in southern Tibet. Mycorrhiza 16:191–196

    Article  CAS  PubMed  Google Scholar 

  • Gaur S, Kaushik P (2011) Analysis of vesicular arbuscular mycorrhiza associated with medicinal plants in Uttarakhand state of India. World Appl Sci J 14:645–653

    Google Scholar 

  • Gee GW, Bauder JW (1986) Particle-size analysis. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis: Part 1—physical and mineralogical methods 1. American Society of Agronomy/Soil Science Society of America, New York/Madison, pp 383–411

    Google Scholar 

  • Gerdemann J, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Giday GK (2013) Management interventions to assist restoration of degraded dry Afromontane forest in Nothern Ethiopia (PhD thesis). Groep Wetenschap & Technologie Press, KU Leuven, KU, Belgium, pp 1–181

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gong M, Tang M, Zhang Q, Feng X (2012) Effects of climatic and edaphic factors on arbuscular mycorrhizal fungi in the rhizosphere of Hippophae rhamnoides in the Loess Plateau, China. Acta Ecol Sin 32:62–67

    Article  Google Scholar 

  • Hildebrandt A, Al Aufi M, Amerjeed M, Shammas M, Eltahir EA (2007) Ecohydrology of a seasonal cloud forest in Dhofar: 1. Field experiment. Water Resour 43:1–13

    Google Scholar 

  • Hindumathi A, Reddy BN (2011) Occurrence and distribution of arbuscular mycorrhizal fungi and microbial flora in the rhizosphere soils of mungbean [Vvigna radiata (L.) Wwilczek] and soybean [Gglycine max (L.) Merr.] from Adilabad, Nizamabad and Karimnagar districts of Andhra Pradesh state, India. Adv Biosci Biotechnol 2:275–286

    Article  CAS  Google Scholar 

  • Iversen CM, Keller JK, Garten CT, Norby RJ (2012) Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment. Glob Change Biol 18:1684–1697

    Article  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant Soil 231:65–79

    Article  CAS  Google Scholar 

  • Khade SW, Rodrigues B (2008) Spatial variations in arbuscular mycorrhizal (AM) fungi associated with Carica papaya L. in a tropical agro-based ecosystem. Biol Agric Hortic 26:149–174

    Article  Google Scholar 

  • Khade SW, Rodrigues BF (2009) Arbuscular mycorrhizal fungi associated with varieties of Carica papaya L. in tropical agro-based ecosystem of Goa, India. Trop Subtrop Agroecosyst 10:369–381

    Google Scholar 

  • Khanam D, Mridha M, Solaiman A (2006) A comparative study of arbuscular mycorrhizal association with different agricultural crops among four AEZs of Bangladesh. J Agril Res 44:147–161

    Google Scholar 

  • Kivlin SN, Emery SM, Rudgers JA (2013) Fungal symbionts alter plant responses to global change. Am J Bot 100:1445–1457

    Article  PubMed  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Science & Business Media. Ilia Chavchavadze State University Publishing, Tbilisi, pp 9–20

  • Lekberg Y, Koide R (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol 168:189–204

    Article  CAS  PubMed  Google Scholar 

  • Lenaerts L (2013) Insights into agency and social interactions in natural resource management: extended case studies from northern Ethiopia. Natural resource management. Wageningen University/Society & Natural Resources, Leuven/Heverlee, pp 2–19

    Google Scholar 

  • Likar M, Bukovnik U, Kreft I, Chrungoo NK, Regvar M (2008) Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum). Mycorrhiza 18:309–315

    Article  PubMed  Google Scholar 

  • Liu Y, Su MY, Yan XH, Liu WT (2000) The mean-square slope of ocean surface waves and its effects on radar backscatter. J Atmos Ocean Technol 17:1092–1105

    Article  Google Scholar 

  • Lugo MA, Cabello MN (2002) Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Córdoba, Argentina) I. Seasonal variation of fungal spore diversity. Mycologia 94:579–586

    PubMed  Google Scholar 

  • Mcgonigle TP, Miller MH (1996) Development of fungi below ground in association with plants growing in disturbed and undisturbed soils. Soil Biol Biochem 28:263–269

    Article  CAS  Google Scholar 

  • Mohammad MJ, Hamad SR, Malkawi HI (2003) Population of arbuscular mycorrhizal fungi in semi-arid environment of Jordan as influenced by biotic and abiotic factors. J Arid Environ 53:409–417

    Article  Google Scholar 

  • Mokria M, Gebrekirstos A, Aynekulu E, Bräuning A (2015) Tree dieback affects climate change mitigation potential of a dry Afromontane forest in northern Ethiopia. For Ecol Manage 344:73–83

    Article  Google Scholar 

  • Moreira-Souza M, Trufem SF, Gomes-da-Costa SM, Cardoso EJ (2003) Arbuscular mycorrhizal fungi associated with Araucaria angustifolia (Bert.) O. Ktze. Mycorrhiza 13:211–215

    Article  CAS  PubMed  Google Scholar 

  • Morton J, Bentivenga S, Wheeler W (1993) Germ plasm in the International Collection of Arbuscular and Vesicular-arbuscular Mycorrhizal Fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48:491–528

    Google Scholar 

  • Muchane MN, Muchane M, Mugoya C, Clet W (2012) Effect of land use system on Arbuscular Mycorrhiza fungi in Maasai Mara ecosystem, Kenya. Afr J Microbiol Res 6:3904–3916

    Google Scholar 

  • Muleta D, Assefa F, Nemomissa S, Granhall U (2008) Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol Fertil Soils 44:653–659

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K (2000) Arbuscular mycorrhizas of plants growing in the Western Ghats region, Southern India. Mycorrhiza 9:297–313

    Article  Google Scholar 

  • Muthukumar T, Sha L, Yang X, Cao M, Tang J, Zheng Z (2003a) Distribution of roots and arbuscular mycorrhizal associations in tropical forest types of Xishuangbanna, southwest China. Appl Soil Ecol 22:241–253

    Article  Google Scholar 

  • Muthukumar T, Sha L, Yang X, Cao M, Tang J, Zheng Z (2003b) Mycorrhiza of plants in different vegetation types in tropical ecosystems of Xishuangbanna, southwest China. Mycorrhiza 13:289–297

    Article  CAS  PubMed  Google Scholar 

  • Nasrullah MS, Robina K, Burni T (2010) Occurrence and distribution of AMF in wheat and Maize crops of Malakand Division of North west Frontier Province. Pak J Bot 42:1301–1312

    Google Scholar 

  • Nogueira MA, Cardoso EJBN (2006) Plant growth and phosphorus uptake in mycorrhizal Rangpur lime seedlings under different levels of phosphorus. Pesqui Agropecu Bras 41:93–99

    Article  Google Scholar 

  • Nyssen J, Vandenreyken H, Poesen J, Moeyersons J, Deckers J, Haile M, Salles C, Govers G (2005) Rainfall erosivity and variability in the northern Ethiopian Highlands. J Hydrol 311:172–187

    Article  Google Scholar 

  • Oechel WC, Vourlitis GL, Hastings SJ, Zulueta RC, Hinzman L, Kane D (2000) Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406:978–981

    Article  CAS  PubMed  Google Scholar 

  • Oliveira AND, Oliveira LAD (2010) Influence of edapho-climatic factors on the sporulation and colonization of arbuscular mycorrhizal fungi in two Amazonian native fruit species. Braz Arch Biol Technol 53:653–661

    Article  Google Scholar 

  • Olsen S, Sommers L, Page A (1982) Methods of soil analysis. Part 2. Chemical and microbiological properties of phosphorus. Agronomy monograph, vol 9. American Society of Agronomy/Academic Press, Madison, pp 403–430

    Google Scholar 

  • Pande M, Tarafdar J (2004) Arbuscular mycorrhizal fungal diversity in neem-based agroforestry systems in Rajasthan. Appl Soil Ecol 26:233–241

    Article  Google Scholar 

  • Panwar J, Tarafdar J (2006) Distribution of three endangered medicinal plant species and their colonization with arbuscular mycorrhizal fungi. J Arid Environ 65:337–350

    Article  Google Scholar 

  • Panwar V, Meghvansi M, Siddiqui S (2011) Short-term temporal variation in sporulation dynamics of arbuscular mycorrhizal (AM) fungi and physico-chemical edaphic properties of wheat rhizosphere. Saudi J Biol Sci 18:247–254

    Article  PubMed  Google Scholar 

  • Pellissier L, Pinto E, Niculita-Hirzel H, Moora M, Villard L, Goudet J, Guex N, Pagni M, Xenarios I, Sanders I (2013) Plant species distributions along environmental gradients: do belowground interactions with fungi matter? Front Plant Sci 4:500

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips JM, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Posada R, Franco L, Ramos C, Plazas L, Suárez J, Álvarez F (2008) Effect of physical, chemical and environmental characteristics on arbuscular mycorrhizal fungi in Brachiaria decumbens (Stapf) pastures. J Appl Microbiol 104:132–140

    CAS  PubMed  Google Scholar 

  • Postma JW, Olsson PA, Falkengren-Grerup U (2007) Root colonisation by arbuscular mycorrhizal, fine endophytic and dark septate fungi across a pH gradient in acid beech forests. Soil Biol Biochem 39:400–408

    Article  CAS  Google Scholar 

  • Rodríguez-Echeverría S, Hol WG, Freitas H, Eason WR, Cook R (2008) Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: spore abundance and root colonisation in six locations of the European coast. Eur J Soil Biol 44:30–36

    Article  Google Scholar 

  • Schmitt CB, Denich M, Demissew S, Friis I, Boehmer HJ (2010) Floristic diversity in fragmented Afromontane rainforests: altitudinal variation and conservation importance. Appl Veg Sci 13:291–304

    Google Scholar 

  • Sebhatleab M (2012) Land use land cover change detection and deforestation susceptibility analysis of Desa’a forest. M. Sc. thesis. Bahir Dar University Press, Addis Ababa, Ethiopia, pp 96–104

  • Sewnet TC, Tuju FA (2013) Arbuscular mycorrhizal fungi associated with shade trees and Coffea arabica L. in a coffee-based agroforestry system in Bonga, Southwestern Ethiopia. Afr Focus 26:111–131

    Google Scholar 

  • Sivakumar N (2013) Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields. Ann Microbiol 63:151–160

    Article  Google Scholar 

  • Smeenk J, Ianson D (2010) Mycorrhizae in the Alaska landscape. University of Alaska Fairbanks Cooperative Extension Service and United States Department of Agriculture, Alaska, pp 1–8

    Google Scholar 

  • Smith SE, Read DJ (2008) Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. Mycorrhizal symbiosis. Academic Press, London, pp 145–148

    Google Scholar 

  • Songachan L, Kayang H, Lyngdoh I (2011) Colonization of arbuscular mycorrhizal fungi in moderately degraded sub-tropical forest stands of Meghalaya, Northeast India. J Agric Technol 7:1673–1684

    Google Scholar 

  • Sreevani A, Reddy B (2004) Arbuscular mycorrhizal fungi associated with tomato (Lycopersicom esculentum Mill.) as influenced by soil physico-chemical properties. Philipp J Sci 133:115

    Google Scholar 

  • Tao L, Jianping L, Zhiwei Z (2004) Arbuscular mycorrhizas in a valley-type savanna in southwest China. Mycorrhiza 14:323–327

    Article  PubMed  Google Scholar 

  • Thrall PH, Hochberg ME, Burdon JJ, Bever JD (2007) Coevolution of symbiotic mutualists and parasites in a community context. Trends Ecol Evol 22:120–126

    Article  PubMed  Google Scholar 

  • Vani SM, Amballa H, Bhumi NR (2014) Arbuscular mycorrhizal fungi associated with rhizosphere soils of brinjal cultivated in Andhra Pradesh, India. Int J Curr Appl Sci 3(5):519-529

    Google Scholar 

  • Vogel-Mikuš K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  PubMed  Google Scholar 

  • Vyas D, Gupta RK (2014) Effect of edaphic factors on the diversity of VAM fungi. Trop Plant Res 1:14–25

    Google Scholar 

  • Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol 159:789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker C, Mize CW, McNabb HS Jr (1982) Populations of endogonaceous fungi at two locations in central Iowa. Can J Bot 60:2518–2529

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Wilson GW, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  PubMed  Google Scholar 

  • Wu Y, Liu T, He X (2009) Mycorrhizal and dark septate endophytic fungi under the canopies of desert plants in Mu Us Sandy Land of China. Front Agric China 3:164–170

    Article  Google Scholar 

  • Wubet T, Kottke I, Teketay D, Oberwinkler F (2003) Mycorrhizal status of indigenous trees in dry Afromontane forests of Ethiopia. For Ecol Manage 179:387–399

    Article  Google Scholar 

  • Yimer F, Ledin S, Abdelkadir A (2006) Soil organic carbon and total nitrogen stocks as affected by topographic aspect and vegetation in the Bale Mountains, Ethiopia. Geoderma 135:335–344

    Article  CAS  Google Scholar 

  • Zangaro W, Rostirola LV, de Souza PB, de Almeida Alves R, Lescano LEM, Rondina ABL, Nogueira MA, Carrenho R (2013) Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza 23:221–233

    Article  PubMed  Google Scholar 

  • Zhao ZW, Xia YM, Qin XZ, Li XW, Cheng LZ, Sha T, Wang GH (2001) Arbuscular mycorrhizal status of plants and the spore density of arbuscular mycorrhizal fungi in the tropical rain forest of Xishuangbanna, southwest China. Mycorrhiza 11:159–162

    Article  PubMed  Google Scholar 

  • Zobel M, Öpik M (2014) Plant and arbuscular mycorrhizal fungal (AMF) communities—which drives which? J Veg Sci 25:1133–1140

    Article  Google Scholar 

Download references

Acknowledgement

We would like to acknowledge the Transdisciplinary Training for Resource Efficiency and Climate Change Adaptation in Africa (TRECCAfrica), which funded the second author for the MSc. studies in Climate and Society at Mekelle University. We are also grateful to TRECCAfrica and Norwegian Programme for Capacity Development in Higher Education and Research for Development (NORHED) project which supported the field research including experimentation and data collection and analysis. The valuable suggestions made by anonymous referees is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emiru Birhane.

Additional information

Project funding: This study is supported by The Steps Towards Sustainable Forest management with the Local Communities in Tigray, Northern Ethiopia (ETH 13/0018).

The online version is available at http://www.springerlink.com

Corresponding editor: Zhu Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birhane, E., Fatumah, N., Gidey, K. et al. Vegetation cover density and disturbance affected arbuscular mycorrhiza fungi spore density and root colonization in a dry Afromontane forest, northern Ethiopia. J. For. Res. 29, 675–686 (2018). https://doi.org/10.1007/s11676-017-0493-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-017-0493-5

Keywords

Navigation