Journal of Forestry Research

, Volume 29, Issue 1, pp 1–12 | Cite as

Assessment of benefits and risks of growing Jatropha (Jatropha curcas) as a biofuel crop in sub-Saharan Africa: a contribution to agronomic and socio-economic policies

  • Keotshephile Kashe
  • Donald L. Kgathi
  • Mike Murray-Hudson
  • Kelebogile B. Mfundisi
Review Article


In sub-Saharan Africa (SSA), the main goals behind the development of a biofuel industry are employment creation and income generation. Jatropha (Jatropha curcas L.) has emerged as a candidate for biodiesel production. It is a non-edible oil producing, drought-resistant plant that can be grown on marginal land with limited water and low soil fertility. However, these are also attributes that typify weedy and invasive plant species. Adding to these concerns are the general questioning of whether biofuel production will reduce Greenhouse gas (GHG) emissions globally. Currently, there is limited information on the potential invasiveness of many biofuel crops, and in particular, the potential risks of cultivating Jatropha. This paper aims to assess the benefits and risks, especially risks, of growing Jatropha for biodiesel production. Jatropha should be screened through a science-based risk-assessment procedure to predict the risk of becoming invasive before it is released for large-scale commercial cultivation. The net GHG savings can be achieved through the cultivation of Jatropha, considering two main factors: no land-use change and crop management without chemical fertilization.


Biofuel Invasive Jatropha Risk 



This study was funded by the Government of Botswana and Japan. Finally, we would like to thank Mrs Frances Murray-Hudson for editing the first draft of this manuscript.


  1. Abdelgadir HA, van Staden J (2013) Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): a review. S Afr J Bot 88:204–218. doi: 10.1016/j.sajb.2013.07.021 CrossRefGoogle Scholar
  2. Abdu-Aguye I, Sannusi A, Alafiya-Tayo RA, Bhusnurmath SR (1986) Acute toxcity studies with Jatropha curcas L. Hum Toxicol 5(4):269–274. doi: 10.1177/096032718600500409 PubMedCrossRefGoogle Scholar
  3. Achten WMJ, Verchot L, Franken Y, Mathijs E, Singh V, Aerts R, Muys B (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32(12):1063–1084. doi: 10.1016/j.biombioe.2008.03.003 CrossRefGoogle Scholar
  4. Achten WMJ, Nielsen LR, Aerts R, Lengkeek AG, Kjaer ED, Trabucco A, Hansen JK, Maes WH, Gradual L, Akinnifesi FK, Muys B (2010) Towards domestication of Jatropha curcas. Biofuels 1(1):91–107CrossRefGoogle Scholar
  5. Achten WMJ, Trabucco A, Maes WH, Verchot LV, Aerts R, Mathijs E, Vantomme P, Singh VP, Muys B (2013) Global greenhouse gas implications of land conversion to biofuel crop cultivation in arid and semi-arid lands–lessons learned from Jatropha. J Arid Environ 98:135–145. doi: 10.1016/j.jaridenv.2012.06.015 CrossRefGoogle Scholar
  6. Achten WMJ, Dillen K, Trabucco A, Verbist B, Messemaker L, Muys B, Mathijs E (2015) The economics and greenhouse gas balance of land conversion to Jatropha: the case of Tanzania. Glob Change Bioenergy 7(2):302–315. doi: 10.1111/gcbb.12160 CrossRefGoogle Scholar
  7. ADB (African Development Bank) (2012) African Economic Outlook 2012. Joint publication of the ADB, Development Centre of the Organization for Economic Cooperation and Development, United Nations Development Programme and United Nations Economic Commission for AfricaGoogle Scholar
  8. Ambasta SP (1994) The useful plants of India. CSIR, New DelhiGoogle Scholar
  9. Ariza-Montobbio P, Lele S (2010) Jatropha plantations for biodiesel in Tamil Nadu, India: viability, livelihood trade-offs, and latent conflict. Ecol Econ 70(2):189–195. doi: 10.1016/j.ecolecon.2010.05.011 CrossRefGoogle Scholar
  10. Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 29(4):293–302. doi: 10.1016/j.biombioe.2005.05.001 CrossRefGoogle Scholar
  11. Barney JN (2014) Bioenergy and invasive plants: quantifying and mitigating future risks. Invasive Plant Sci Manag 7(2):199–209. doi: 10.1614/IPSM-D-13-00060.1 CrossRefGoogle Scholar
  12. Barney J, DiTomaso J (2008) Non-native species and bioenergy: are we cultivating the next invader? Bioscience 58(1):64–70. doi: 10.1641/B580111 CrossRefGoogle Scholar
  13. Barney JN, DiTomaso JM (2011) Global climate niche estimates for bioenergy crops and invasive species of agronomic origin: potential problems and opportunities. PLoS ONE. doi: 10.1371/journal.pone.0017222.t001 PubMedPubMedCentralGoogle Scholar
  14. Basili M, Fontini F (2012) Biofuel from Jatropha curcas: environmental sustainability and option value. Ecol Econ 78:1–8. doi: 10.1016/j.ecolecon.2012.03.010 CrossRefGoogle Scholar
  15. Becker K, Makkar HPS (1998) Effects of phorbolesters in carp (Cyprinus carpio L.). Vet Hum Toxicol 40(2):82–86PubMedGoogle Scholar
  16. Behera SK, Srivastava P, Tripathi R, Singh JP, Singh N (2010) Evaluation of plant performance of Jatropha curcas L. under different agro-practices for optimizing biomass—a case study. Biomass Bioenergy 34(1):30–41. doi: 10.1016/j.biombioe.2009.09.008 CrossRefGoogle Scholar
  17. Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99(6):1716–1721. doi: 10.1016/j.biortech.2007.03.051 PubMedCrossRefGoogle Scholar
  18. Biswas S, Kaushik N, Srikanth G (2006) Biodiesel: technology and business opportunities—an insight. In: Singh B, Swaminathan R, Ponraj V (eds) Proceedings of the biodiesel conference toward energy independence—focus of Jatropha. Rashtrapati Bhawan, New Delhi, India, pp. 303–330Google Scholar
  19. Biswas KP, Pohit S, Kumar R (2010) Biodiesel from Jatropha: can India meet the 20% blending target? Energy Policy 38(3):1477–1484. doi: 10.1016/j.enpol.2009.11.029 CrossRefGoogle Scholar
  20. Blanchard R, Richardson DM, O’Farrell PJ, von Maltitz GP (2011) Biofuels and biodiversity in South Africa. S Afr J Sci 107(5–6):1–8. doi: 10.4102/sajs.v107i5/6.186 Google Scholar
  21. Brittaine R, Lutaladio N (2010) Jatropha: a smallholder bioenergy crop—the potential for pro-poor development. In: Integrated crop management, vol 8. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  22. Buddenhagen CE, Chimera C, Clifford P (2009) Assessing biofuel crop invasiveness: a case study. PLoS ONE. doi: 10.1371/journal.pone.0005261 PubMedPubMedCentralGoogle Scholar
  23. Burkill HM (1994) The useful plants of west tropical Africa, vol 2. Royal Botanical Gardens, KewGoogle Scholar
  24. Burns JH, Pardini EA, Michele R, Schutzenhofer MR, Chung YA, Seidler KJ, Knight TM (2013) Greater sexual reproduction contributes to differences in demography of invasive plants and their noninvasive relatives. Ecology 94(5):995–1004. doi: 10.1890/12-1310.1 PubMedCrossRefGoogle Scholar
  25. Charles D (2009) Corn-based ethanol flunks key test. Science 324(5927):587. doi: 10.1126/science.324_587 PubMedCrossRefGoogle Scholar
  26. Clout MN, Williams PA (2009) Invasive species management: a handbook of principles and techniques. Oxford University Press, OxfordGoogle Scholar
  27. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395CrossRefGoogle Scholar
  28. Hannan-Jones M, Csurhes, S (2008) Pest plant risk assessment physic nut, PR 08–3681. Department of Primary Industries and Fisheries, Queensland Government, Queensland, AustraliaGoogle Scholar
  29. Das S, Pries JA, Schweitzer C (2012) Modelling regional scale biofuel scenarios—a case study for India. Glob Change Bioenergy 4(2):176–192. doi: 10.1111/j.1757-1707.2011.01114.x CrossRefGoogle Scholar
  30. Debnath M, Bisen PS (2008) Jatropha curcas L. a multipurpose stress resistant plant with a potential for ethnomedicine and renewable energy. Curr Pharm Biotechnol 9(4):288–306. doi: 10.2174/138920108785161541 PubMedCrossRefGoogle Scholar
  31. Deore AC, Johnson TS (2008) High-frequency plant regeneration from leaf-disc cultures of Jatropha curcas L.: an important biodiesel plant. Plant Biotechnol Rep 2:7–11. doi: 10.1007/s11816-008-0042-y CrossRefGoogle Scholar
  32. DiTomaso JM, Barney JN, Fox AM (2007) Biofuel feedstocks: the risk of future invasions. Council for Agricultural Science and Technology Commentary QTA 2007–1, Ames, IA, p 8Google Scholar
  33. Dornburg V, van Vuuren D, van de Ven G, Langeveld H, Meeusen M, Banse M, van Oorschot M, Ros J, van den Born GJ, Aiking H, Londo M, Mozaffarian H, Verweij P, Lysen E, Faaij A (2010) Bioenergy revisited: key factors in global potentials of bioenergy. Energy Environ Sci 3:258–267. doi: 10.1039/B922422J CrossRefGoogle Scholar
  34. Edrisi SA, Dubey RK, Tripathi V, Bakshi M, Srivastava P, Jamil S, Singh HB, Singh N, Abhilash PC (2015) Jatropha curcas L.: a crucified plant waiting for resurgence. Renew Sustain Energy Rev 41:855–862CrossRefGoogle Scholar
  35. ENDA (Environmental Development Action) (2008) Biofuels development in Africa: illusion or sustainable alternative? Accessed 25 Feb 2016
  36. Enweremadu CC, Alamu OJ (2010) Development and characterization of biodiesel from shea nut butter. Int Agrophys 24:29–34Google Scholar
  37. Escobar JC, Lora ES, Osvaldo J, Venturini OJ, Edgar E, Yáũez EE, Edgar F, Castillo EF, Almazan O (2009) Biofuels: environment, technology and food security. Renew Sustain Energy Rev 13:1275–1287CrossRefGoogle Scholar
  38. Euler H, Gorriz D (2004) Case study Jatropha Curcas: Global facilitation unit for underutilized species. Deutsche Gesellschaft fúr Technische Zusammenarbeit (GTZ), Frankfurt, Accessed 22 Mar 2016
  39. Faaij APC, Domac J (2006) Emerging international bio-energy markets and opportunities for socio-economic development. Energy Sustain Dev 10(1):7–19. doi: 10.1016/S0973-0826(08)60503-7 CrossRefGoogle Scholar
  40. Fairless D (2007) Biofuel: the little shrub that could–maybe. Nature 449:652–655. doi: 10.1038/449652a PubMedCrossRefGoogle Scholar
  41. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238. doi: 10.1126/science.1152747 PubMedCrossRefGoogle Scholar
  42. Fletcher RJ Jr, Robertson BA, Evans J, Doran PJ, Alavalapati JRR, Schemske DW (2011) Biodiversity conservation in the era of biofuels: risks and opportunities. Front Ecol Environ 9(3):161–168. doi: 10.1890/090091 CrossRefGoogle Scholar
  43. Flory SL, Lorentz KA, Gordon DR, Sollenberger LE (2012) Experimental approaches for evaluating the invasion risk of biofuel crops. Environ Res Lett. doi: 10.1088/17489326/7/4/045904 Google Scholar
  44. Foidl N, Foildl G, Sanchez M, Mittelbach M, Hackel S (1996) Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresour Technol 58(1):77–82. doi: 10.1016/S0960-8524(96)00111-3 CrossRefGoogle Scholar
  45. Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production, and socio-economic development in degraded areas in India: need, potential and perspectives of Jatropha plantations. Nat Resour Forum 29(1):12–24CrossRefGoogle Scholar
  46. Gallagher E (2008) Review of the indirect effects of biofuels production. Renewable Fuels Agency. Accessed 12 Dec 2015
  47. Garg KK, Karlberg L, Wani SP, Berndes G (2011) Jatropha production on wastelands in India: opportunities and trade-offs for soil and water management at the watershed scale. Biofuel Bioprod Biorefin 5:410–430. doi: 10.1002/bbb.312 CrossRefGoogle Scholar
  48. Gasparatos A, von Maltitz GP, Johnson FX, Lee L, Mathai M, de Oliveira JAP, Willis KJ (2015) Biofuels in sub-Sahara Africa: drivers, impacts and priority policy areas. Renew Sustain Energy Rev 45:879–901. doi: 10.1016/j.rser.2015.02.006 CrossRefGoogle Scholar
  49. GEXSI (Global Exchange for Social Investment) (2008) Global Market Study on Jatropha. Final report of The GEXSI, prepared for the World Wide Fund for Nature (WWF), London/BerlinGoogle Scholar
  50. GISP (The Global Invasive Species Programme) (2007) Assessing the Risk of Invasive Alien Species Promoted for Biofuels. GISPGoogle Scholar
  51. GISP (The Global Invasive Species Programme) (2008) Biofuels run the risk of becoming invasive species. Accessed 15 Mar 2016
  52. Gour VK (2006) Production and practices including post-harvest management of Jatropha curcas. In: Singh B, Swaminathan R, Ponraj V (eds) Biodiesel conference towards energy independence—focus on Jatropha, Hyderabad, June 9–10, 2006Google Scholar
  53. Gübitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67(1):73–82. doi: 10.1016/S0960-8524(99)00069-3 CrossRefGoogle Scholar
  54. Heller J (1996) Physic nut Jatropha curcas L promoting the conservation and use of underutilized and neglected crops, 1st edn. International Plant Genetics and Crop Plant Research Institute, Gartersleben (IPGRI), RomeGoogle Scholar
  55. Henning R (2004) Jatropha curcas L. in Africa. Global Facilitation Unit for Underutilized Species, RomeGoogle Scholar
  56. Holle BV, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86(12):3212–3218. doi: 10.1890/05-0427 CrossRefGoogle Scholar
  57. Hulme PE (1998) Post-dispersal seed predation: consequences for plant demography and evolution. Perspect Plant Ecol 1(1):32–46CrossRefGoogle Scholar
  58. IEA (International Energy Agency) (2006). Key world energy statistics. Paris, France. Accessed 15 April 2016
  59. IEA (International Energy Agency) (2014) World Energy Outlook 2014 Special Report: Africa Energy Outlook. Accessed 15 April 2016
  60. Inafuku-Teramoto S, Mazereku M, Coetzee T, Gwafila C, Lekgari AL, Ketumile D, Fukuzawa Y, Yabuta S, Masukujane M, George DGM, Chite SM, Ueno M, Kawamitsu Y, Akashi K (2013) Production approaches to establish effective cultivation methods for Jatropha (Jatropha curcas L.) under cold and semi-arid climate conditions. Int J Agron Plant Prod 4:3804–3815Google Scholar
  61. IPCC (Intergovernmental Panel on Climate Change) (2006) N2O emissions from managed soils and CO2 emissions from lime and urea application. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds) ‘IPCC Guidelines for National Greenhouse Gas Inventories: vol 4: agriculture, forestry and other land use’, pp. 1–54. (The Institute for Global Environmental Strategies: Hayama, Japan)[Verified 1 November 2010]
  62. IUCN (International Union for Conservation of Nature) (2009) Guidelines on biofuels and invasive species. IUCN, GlandGoogle Scholar
  63. Jain SK (1991) Dictionary of Indian folk medicine and ethnobotany. Deep Publications, New DehliGoogle Scholar
  64. Jelbert K, Stott I, McDonald RA, Hodgson D (2015) Invasiveness of plants is predicted by size and fecundity in the native range. Ecol Evol 5(10):1933–1943. doi: 10.1002/ece3.1432 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Jones N, Miller JH (1992) Jatropha curcas L: a multipurpose species for problematic sites. The World Bank, Washington DCGoogle Scholar
  66. Jongschaap R, Corré W, Bindraban P, Brandenburg W (2007) Claims and facts on Jatropha curcas L. Global Jatropha curcas evaluation, breeding and propagation programme. Plant Research International BV, WageningenGoogle Scholar
  67. Jørgensen U (2011) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sustain 3(1–2):24–30. doi: 10.1016/j.cosust.2010.12.003 CrossRefGoogle Scholar
  68. Kaushik N, Kumar K, Kumar S, Kaushik N, Roy S (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenergy 31(7):497–502. doi: 10.1016/j.biombioe.2007.01.021 CrossRefGoogle Scholar
  69. Kelly CK (1995) Seed size in tropical trees: a comparative study of factors affecting seed size in Peruvian angiosperms. Oecologia 102(3):377–388. doi: 10.1007/BF00329805 PubMedCrossRefGoogle Scholar
  70. Kgathi DL, Mfundisi KB, Mmopelwa G, Mosepele K (2012) Potential impacts of biofuel development on food security in Botswana: a contribution to energy policy. Energy Policy 43:70–79. doi: 10.1016/j.enpol.2011.12.027 CrossRefGoogle Scholar
  71. Kheira AA, Atta NMM (2009) Response of Jatropha curcas L. to water deficits: yield, water use efficiency and oilseed characteristics. Biomass Bioenergy 33(10):1343–1350. doi: 10.1016/j.biombioe.2008.05.015 CrossRefGoogle Scholar
  72. King AJ, He WJA, Freudenberger M, Ramiaramanana D, Graham IA (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60(10):2897–2905. doi: 10.1093/jxb/erp025 PubMedCrossRefGoogle Scholar
  73. Koçar G, Civaş N (2013) An overview of biofuels from energy crops: current status and future prospects. Renew Sustain Energy Rev 28:900–916. doi: 10.1016/j.rser.2013.08.022 CrossRefGoogle Scholar
  74. Kritana P, Gheewala SH (2006) Energy and greenhouse gas implications of biodiesel production from Jatropha curcas L. Paper presented at the second joint international conference on sustainable energy and environment, Bangkok, 21–23 November 2006Google Scholar
  75. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crop Prod 28(1):1–10. doi: 10.1016/j.indcrop.2008.01.001 CrossRefGoogle Scholar
  76. Kumar S, Singh J, Nanoti SM, Garg MO (2012) A comprehensive life cycle assessment (LCA) of Jatropha biodiesel production in India. Bioresour Technol 110:723–729. doi: 10.1016/j.biortech.2012.01.142 PubMedCrossRefGoogle Scholar
  77. Larson ED (2006) A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain Dev 10(2):109–126. doi: 10.1016/S0973-0826(08)60536-0 CrossRefGoogle Scholar
  78. Lewandowski I, Scurlock JMO, Lindvall E, Chistou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25(4):335–361CrossRefGoogle Scholar
  79. Lewis KC, Read D, Porter RD (2014) Global approaches to addressing biofuel-related invasive species risks and incorporation into U.S. laws and policies. Ecol Monogr 84(2):171–201. doi: 10.1890/13-1625.1 CrossRefGoogle Scholar
  80. Liang Y, Chen H, Tang M, Yang P, Shen S (2007) Responses of Jatropha curcas seedlings to cold stress: photosynthesis related proteins and chlorophyll fluorescence characteristics. Physiol Plant 131(3):508–517. doi: 10.1111/j.1399-3054.2007.00974.x PubMedCrossRefGoogle Scholar
  81. Lioglier HA (1990) Medicinal plants of Puerto Rico and the Caribbean. Iberoamericana, Editions Inc, San JuanGoogle Scholar
  82. Lockwood J, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20(5):223–228. doi: 10.1016/j.tree.2005.02.004 PubMedCrossRefGoogle Scholar
  83. Loos TK (2008) Socio-economic impact of a Jatropha-project on smallholder farmers in Mpanda. Master Thesis, University of Hohenheim, HohenheimGoogle Scholar
  84. Lopez O, Foidl G, Foidl N (1997) Production of biogas from Jatropha curcus fruit shells. In: Gübitz GM, Mittelbach M, Trabi MM (eds) Proceedings of the Symposium on Jatropha 97, 23–27 February 1997, Graz, AustriaGoogle Scholar
  85. Low T, Booth C, Sheppard A (2011) Weedy biofuels: what can be done? Curr Opin Environ Sustain 3(1–2):55–59. doi: 10.1016/j.cosust.2010.12.007 CrossRefGoogle Scholar
  86. Maciel FM, Laberty MA, Oliveira ND, Felix SP, Soares AMD, Verícimo MA, Machado OLT (2009) A new 2S albumin from Jatropha curcas L. and assessment of its allergenic properties. Peptides 30:2103–2107PubMedCrossRefGoogle Scholar
  87. Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz F (2000) Biotic invasions: causes, epidemiology, global consequences and control. Ecol Appl 10(3):689–710. doi: 10.2307/2641039 CrossRefGoogle Scholar
  88. Makkar HPS, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 111(8):773–787. doi: 10.1002/ejlt.200800244 CrossRefGoogle Scholar
  89. Makkar HPS, Becker K, Schmook B (1998) Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Food Hum Nutr 52(1):31–36. doi: 10.1023/A:1008054010079 CrossRefGoogle Scholar
  90. Maltsoglou I, Koizumi T, Felix E (2013) The status of bioenergy development in developing countries. Glob Food Secur 2(2):104–109. doi: 10.1016/j.gfs.2013.04.002 CrossRefGoogle Scholar
  91. Mariappan N, Srimathi P, Sundaramoorthi L, Sudhakar K (2014) Effect of growing media on seed germination and vigor in biofuel tree species. J For Res 25(4):909–913. doi: 10.1007/s11676-014-0484-8 CrossRefGoogle Scholar
  92. Martínez-Herrera J, Siddhuraju P, Francis G, Davila-Ortiz G, Becker K (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96(1):80–899. doi: 10.1016/j.foodchem.2005.01.059 CrossRefGoogle Scholar
  93. Misra M, Misra AN (2010) Jatropha: the biodiesel plant biology, tissue culture and genetic transformation–a review. Int J Pure Appl Sci Technol 1(1):1–24Google Scholar
  94. Mitchell A (2008) The implications of smallholder cultivation of the biofuel crop, Jatropha curcas, for local food security and socio-economic development in northern Tanzania. Masters Thesis, University of London (England), Department of Anthropology and Ecology of DevelopmentGoogle Scholar
  95. Mitchell D (2011) Biofuels in Africa: opportunities, prospects, and challenges. World Bank, Washington, DCGoogle Scholar
  96. Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63:114–122. doi: 10.1016/j.enpol.2013.08.033 PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mulugetta Y (2008) Evaluating the economics of biodiesel in Africa. Renew Sustain Energy Rev 13(6–7):1592–1598. doi: 10.1016/j.rser.2008.09.011 Google Scholar
  98. Muys B, Norgrove L, Alamirew T, Birech R, Chirinian E, Delelegn Y, Ehrensperger A, Ellison CA, Feto A, Freyer B, Gevaert J, Gmünder S, Jongschaap REE, Kaufmann M, Keane J, Kenis M, Kiteme B, Langat J, Lyimo R, Moraa V, Muchugu J, Negussie A, Ouko C, Rouamba MW, Soto I, Wörgetter M, Zah R, Zetina R (2013) Integrating mitigation and adaptation into development: the case of Jatropha curcas in sub-Saharan Africa. GCB Bioenergy 6:169–171. doi: 10.1111/gcbb.12070 CrossRefGoogle Scholar
  99. Naik S, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597. doi: 10.1016/j.rser.2009.10.003 CrossRefGoogle Scholar
  100. Ndong R, Montrejaud-Vignoles M, Saint Girons O, Gabrielle B, Pirot R, Domergue M, Sablayrolles C (2009) Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. GCB Bioenergy 1(3):197–210. doi: 10.1111/j.1757-1707.2009.01014.x CrossRefGoogle Scholar
  101. Negussie A, Achten WMJ, Aerts R, Norgrove L, Sinkala T, Hermy M, Muys B (2013a) Invasiveness risk of the tropical biofuel crop Jatropha curcas L. into adjacent land use systems: from the rumours to the experimental facts. GCB Bioenergy 5(4):419–430. doi: 10.1111/gcbb.12011 CrossRefGoogle Scholar
  102. Negussie A, Achten WMJ, Norgrove L, Hermy M, Muys B (2013b) Invasiveness risk of biofuel crops using Jatropha curcas L. as a model species. Biofuel Bioprod Biorefin 7(5):485–498. doi: 10.1002/bbb.1416 CrossRefGoogle Scholar
  103. Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19:1–15CrossRefGoogle Scholar
  104. Orwa C, Mutua A, Kindt R, Jamnadass R, Anthony S (2009) Agroforestree database: a tree reference and selection guide version 4.0. Accessed 10 Feb 2016
  105. Osamu K, Carl HW (1989) Biomass handbook. Gordon Breach Science Publisher, PhiladelphiaGoogle Scholar
  106. Patil VK, Bandare P, Kulkani PB, Naik GR (2015) Progeny evaluation of Jatropha curcas and Pongamia pinnata with comparison to bioproductivity and biodiesel parameters. J For Res 26(1):137–142. doi: 10.1007/s11676-014-0546-y CrossRefGoogle Scholar
  107. Peres CA, Schiesari LC, Dias-Leme CL (1997) Vertebrate predation of Brazil-nuts (Bertholletia excelsa, Lecythidaceae), an agouti-dispersed Amazonian seed crop: a test of the escape hypothesis. J Trop Ecol 13(1):69–79CrossRefGoogle Scholar
  108. Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84(1):1–20. doi: 10.1016/S0167-8809(00)00178-X CrossRefGoogle Scholar
  109. Purkayastha J, Sugla T, Paul A, Mazumdar P, Basu A, Solleti SK, Mazumdar P, Basu A, Mohommad A, Ahmed Z, Sahoo L (2010) Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Plant 54(1):13–20. doi: 10.1007/s10535-010-0003-5 CrossRefGoogle Scholar
  110. Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W (ed) Ecological studies. Springer, New YorkGoogle Scholar
  111. Quinn LD, Barney JN, McCubbins JSN, Endres AB (2013) Navigating the “noxious” and“invasive” regulatory landscape: suggestions for improved regulation. Bioscience 63(2):124–131. doi: 10.1525/bio.2013.63.2.8 CrossRefGoogle Scholar
  112. Quirin M, Gärtner SO, Pehnt M, Reinhardt GA (2004) CO2 mitigation through Biofuels in the transport sector—tatus and perspectives, IFEU Institute for Energy and Environmental Research, Heidelberg.
  113. Raghu S, Anderson RC, Daehler CC, Davis AS, Wiedenmann RN, Simberloff D, Mack RN (2006) Adding biofuels to the invasive species fire? Science 313(22):1742PubMedCrossRefGoogle Scholar
  114. Rakkimuthu R, Nithya PS, Aravinthan KM (2011) In vitro propagation of Jatropha curcas L—a valuable multipurpose crop. Adv Biotech 11:24–25Google Scholar
  115. Ranade SA, Srivastava AP, Rana TS, Srivastava J, Tuli R (2008) Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy 32(6):533–540. doi: 10.1016/j.biombioe.2007.11.006 CrossRefGoogle Scholar
  116. Randall J (1996) Weed control for the preservation of biological diversity. Weed Technol 10(2):370–383Google Scholar
  117. Rao AVRK, Wani SP, Singh P, Srinivas K, Rao ChS (2012) Water requirement and use by Jatropha curcas in semi-arid tropical location. Biomass Bioenergy 39:175–181. doi: 10.1016/j.biombioe.2012.01.013 CrossRefGoogle Scholar
  118. Rejmánek M (2000) Invasive plants: approaches and predictions. Austral Ecol 25(5):497–506. doi: 10.1046/j.1442-9993.2000.01080.x CrossRefGoogle Scholar
  119. Rejmánek M, Richardson DM (1996) What attributes make some plant species more invasive? Ecology 77(6):1655–1661. doi: 10.2307/2265768 CrossRefGoogle Scholar
  120. Renner R (2007) Green gold in a shrub. Entrepreneurs target the Jatropha plant as the next big biofuel. Sci Am 296:20–23. doi: 10.1038/scientificamerican0607-20 PubMedCrossRefGoogle Scholar
  121. Ricci A, Chekhovskiy K, Azhaguvel P, Albertini E, Falcinelli M, Saha M (2012) Molecular characterization of Jatropha curcas L. Resources and identification of population-specific markers. Bioenergy Res 5(1):215–224. doi: 10.1007/s12155-011-9150-6 CrossRefGoogle Scholar
  122. Richardson DM, Blanchard R (2011) Learning from our mistakes: minimizing problems with invasive biofuel plants. Curr Opin Env Sustainability 3(1–2):36–42. doi: 10.1016/j.cosust.2010.11.006 CrossRefGoogle Scholar
  123. Robertson GP, Dale VH, Doering OC, Hamburg SP, Melillo JM, Wander MM, Parton WJ, Adler PR, Barney JN, Cruse RM, Duke CS, Fearnside PM, Follett RF, Gibbs HK, Goldemberg J, Mladenoff DJ, Ojima D, Palmer MW, Sharpley A, Wallace L, Weathers KC, Wiens JA, Wilhelm WW (2008) Agriculture. Sustainable biofuels redux. Science 322:49–50. doi: 10.1126/science.1161525 PubMedCrossRefGoogle Scholar
  124. Romijn HA (2011) Land clearing and greenhouse gas emissions from Jatropha biofuels on African Miombo Woodlands. Energy Policy 39:5751–5762. doi: 10.1016/j.enpol.2010.07.041
  125. Romijn HA, Caniels MCJ (2011) The Jatropha biofuels sector in Tanzania 2005–2009: evolution towards sustainability? Res Policy 40(4):618–636. doi: 10.1016/j.respol.2011.01.005 CrossRefGoogle Scholar
  126. Royal Botanic Gardens Sydney (2008) Australia’s Virtual Herbarium. Royal Botanic Gardens, Sydney, Australia. Accessed 12 Dec 15
  127. Sabandar CW, Ahmat N, Jaafar FM, Sahidin I (2013) Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry 85:7–29. doi: 10.1016/j.phytochem.2012.10.009 PubMedCrossRefGoogle Scholar
  128. Sachdeva K, Garg P, Singh M, Srivastava B (2011) Wound healing potential of extract of Jatropha curcas L. (stem bark) in rats. Pharmacogn J 3(25):67–72. doi: 10.5530/pj.2011.25.12 CrossRefGoogle Scholar
  129. Sanderson K (2009) Wonder weed plans fail to flourish. Nature 461(7262):328–329. doi: 10.1038/461328a PubMedCrossRefGoogle Scholar
  130. Scarlat N, Dallemand JF (2011) Recent developments of biofuels/bioenergy sustainability certification: a global overview. Energy Policy 39(3):1630–1646. doi: 10.1016/j.enpol.2010.12.039 CrossRefGoogle Scholar
  131. Scharlemann J, Laurance W (2008) How green are biofuels? Science 319:43PubMedCrossRefGoogle Scholar
  132. Schmook B, Seralta-Peraza L (1997) Jatropha curcas: distribution and uses in the Yucatan Peninsula of Mexico. In: Gübitz GM, Mittelbach M, Trabi M (eds) Biofuels and industrial products from Jatropha curcas. GrazGoogle Scholar
  133. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Heyes D, Yu TH (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land use change. Science 319(5867):1238–1240. doi: 10.1126/science.1151861 PubMedCrossRefGoogle Scholar
  134. Segerstedt A, Bobert J (2013) Revising the potential of large-scale Jatropha oil production in Tanzania: an economic land evaluation assessment. Energy Policy 57:491–505. doi: 10.1016/j.enpol.2013.02.023 CrossRefGoogle Scholar
  135. Singh L, Bargali SS, Swamy SL (2006) Production, practices and post-Harvest Management in Jatropha. In: B Singh, R Swaminathan, V Ponraj (eds) Proceedings of the biodiesel conference toward energy independence—focus of Jatropha. Rashtrapati Bhawan, New DelhiGoogle Scholar
  136. Singh B, Singh K, Shukla G, Goel VL, Pathre UV, Rahi TS, Tuli R (2013a) The field performance of some accessions of Jatropha curcas L. (biodiesel plant) on degraded sodic land in North India. Int J Green Energy 10(10):1026–1040. doi: 10.1080/15435075.2012.738336 CrossRefGoogle Scholar
  137. Singh BSK, Rao GR, Chikara J, Kumar D, Mishra DK, Saikia SP, Pathre UV, Raghuvanshi N, Rahi TS, Tuli R (2013b) Agro-technology of Jatropha curcas for diverse environmental conditions in India. Biomass Bioenergy 48:191–202. doi: 10.1016/j.biombioe.2012.11.025 CrossRefGoogle Scholar
  138. Soo-Young N (2011) Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: a review. Renew Sustain Energy Rev 15(1):131–149. doi: 10.1016/j.rser.2010.08.012 CrossRefGoogle Scholar
  139. Spaan W, Bodna´r F, Idoe O, De Graaff J (2004) Implementation of contour vegetation barriers under farmer’s conditions in Burkina Faso and Mali. Q J Int Agric 43(1):21–38Google Scholar
  140. Srivastava P, Behera SK, Gupta J, Jamil S, Singh N, Sharma YK (2011) Growth performance, variability in yield traits and oil content of selected accessions of Jatropha curcas L. growing in a large scale plantation. Biomass Bioenergy 35(9):3936–3942. doi: 10.1016/j.biombioe.2011.06.008 CrossRefGoogle Scholar
  141. Staubmann R, Foidl G, Foidl N, Gübitz GM, Lafferty RM, Arbizu VM, Steiner W (1997) Biogas production from Jatropha curcas press cake. Appl Biochem Biotech 63–65:457–467CrossRefGoogle Scholar
  142. Steer A, Hanson C (2015) Biofuels are not a green alternative to fossil fuels. Accessed 15 Nov 15
  143. Stewart JR, Toma Y, Fernabdez FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1:126–153. doi: 10.1111/j.1757-1707.2009.01010.x
  144. Tang W, Tang AY (2014) Transgenic woody plants for biofuel. J. For Res 25(2):225–236. doi: 10.1007/s11676-014-0454-1 CrossRefGoogle Scholar
  145. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels–The food, energy and environment trilemma. Science 325(5938):270–271. doi: 10.1126/science.1177970 PubMedCrossRefGoogle Scholar
  146. Tiwari AK, Kumar A, Raheman H (2007) Biodiesel production from Jatropha (Jatropha curcas) with high free fatty acids: an optimized process. Biomass Bioenergy 31(8):569–575. doi: 10.1016/j.biombioe.2007.03.003 CrossRefGoogle Scholar
  147. Tobin J, Fulford DJ (2005) Life cycle assessment of the production of biodiesel from Jatropha. Masters Dissertation, The University of Reading (UK)Google Scholar
  148. van Eijck J, Smeets E, Jongschaap R, Romijn H, Balkema A (2010) Jatropha assessment; agronomy, socio-economic issues and ecology, facts from literature. Copernicus Institute, Utrecht University, Eindhoven University of Technology and Wageningen PRI, Utrecht.
  149. van Eijck J, Smeets E, Faaij A (2012) The economic performance of jatropha, cassava and eucalyptus production systems for energy in an East African smallholder setting. Global Change Bioenerg 4(6):828–845. doi: 10.1111/j.1757-1707.2012.01179.x CrossRefGoogle Scholar
  150. van Eijck J, Romijn H, Smeets E, Bailis R, Rooijakkers M, Hooijkaas N, Verweij P, Faaij A (2014) Comparative analysis of key socio-economic and environmental impacts of smallholder and plantation based jatropha biofuel production systems in Tanzania. Biomass Bioenergy 61:25–45. doi: 10.1016/j.biombioe.2013.10.005 CrossRefGoogle Scholar
  151. van Vuuren DP, van Vliet J, Stehfest E (2009) Future bio-energy potential under various natural constraints. Energy Policy 37(11):4220–4230. doi: 10.1016/j.enpol.2009.05.029 CrossRefGoogle Scholar
  152. Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of earth’s ecosystem. Science 277(5325):494–499. doi: 10.1126/science.277.5325.494 CrossRefGoogle Scholar
  153. von Maltitz G, Gasparatos A, Fabricius C (2014) The rise, fall and potential resilience benefits of Jatropha in Southern Africa. Sustainability 6(6):3615–3643. doi: 10.3390/su6063615 CrossRefGoogle Scholar
  154. Wani TA, Kitchku S, Ram G (2012) Genetic variability studies for morphological and qualitative attributes among Jatropha curcas L. accessions grown under subtropical conditions of North India. S Afr J Bot 79:102–105. doi: 10.1016/j.sajb.2011.10.009 CrossRefGoogle Scholar
  155. Whitaker M, Heath G (2008) Life cycle assessmentof the use of Jatropha biodiesel in Indian locomotives. Technical Report NREL/TP-6A2-44428, National Renewable Energy Laboratory, US Department of Energy, Golden, CO.
  156. Willson MF, Traveset A (2000) The ecology of seed dispersal. In: Fenner M (ed) Seeds: The ecology of regeneration in plant communities. CABI International, Wallingford, pp 85–110CrossRefGoogle Scholar
  157. Wiskerke WT, Dornburg V, Rubanza CDK, Malimbwi RE, Faaij APC (2010) Cost/benefit analysis of biomass energy supply options for rural smallholders in the semi-arid eastern part of Shinyanga Region in Tanzania. Renew Sustain Energy Rev 14(1):148–165. doi: 10.1016/j.rser.2009.06.001 CrossRefGoogle Scholar
  158. Wittenberg R, Cock MJW (2001) Invasive alien species: A toolkit of best prevention and management practices. CAB International, WallingfordCrossRefGoogle Scholar
  159. Zegada-Lizarazu W, Monti A (2012) Are we ready to cultivate sweet sorghum as a bioenergy feedstock? A review on field management practices. Biomass Bioenergy 40:1–12. doi: 10.1016/j.biombioe.2012.01.048 CrossRefGoogle Scholar
  160. Ziolkowska J (2014) Optimizing biofuels production in an uncertain environment: conventional vs. advanced technologies. Appl Energy 114:366–376. doi: 10.1016/j.apenergy.2013.09.060 CrossRefGoogle Scholar

Copyright information

© Northeast Forestry University and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Keotshephile Kashe
    • 1
  • Donald L. Kgathi
    • 1
  • Mike Murray-Hudson
    • 1
  • Kelebogile B. Mfundisi
    • 1
  1. 1.Okavango Research InstituteUniversity of BotswanaMaunBotswana

Personalised recommendations