Experimental Investigation and Thermodynamic Modeling of the Phase Equilibria in the Cu-Nb-Ni Ternary System


The phase equilibria of the Cu-Nb-Ni system were investigated via a combination of key equilibrated alloys and thermodynamic modeling. Twelve different compositions of ternary alloys were prepared to determine the isothermal sections at 700, 800 and 900 °C, by means of x-ray diffraction and scanning electron microscopy with energy dispersive x-ray spectroscopy. The three- and two-phase regions were determined. The solubilities of the NbNi3 and Nb7Ni6 phases were measured. No ternary compound was found in this ternary system. Based on the experimental equilibria data from the literature and the present work, a thermodynamic description of the Cu-Nb-Ni system was carried out by using the CALPHAD (CALculation of PHAse Diagrams) method. The substitutional model and sublattice model were employed to describe the solution phases and intermediate phases, respectively. A set of self-consistent thermodynamic parameters of the Cu-Nb-Ni system was conclusively obtained. Most of the reliable experimental data were reproduced by the present thermodynamic modeling.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    I. López-Ferreño, J.F. Gómez-Cortés, T. Breczewski, I. Ruiz-Larrea, M.L. Nó, and J.M. San-Juan, High-Temperature Shape Memory Alloys Based on the Cu-Al-Ni System: Design and Thermomechanical Characterization, J. Mater. Res. Technol., 2020, 9(5), p 9972-9984

    Article  Google Scholar 

  2. 2.

    J. Yi, Y.L. Jia, Y.Y. Zhao, Z. Xiao, K.J. He, Q. Wang, M.P. Wang, and Z. Li, Precipitation Behavior of Cu-3.0Ni-0.72Si Alloy, Acta Mater., 2019, 166, p 261-270

    ADS  Article  Google Scholar 

  3. 3.

    K.F. Wang, S.L. Shang, Y.X. Wang, A. Vivek, G. Daehn, Z.K. Liu, and J.J. Li, Unveiling Non-Equilibrium Metallurgical Phases in Dissimilar Al-Cu Joints Processed by Vaporizing Foil Actuator Welding, Mater. Des., 2020, 186, p 108306

    Article  Google Scholar 

  4. 4.

    X. Xiao, Y. Du, Z.J. Liu, X. Kai, C. Chong, L.C. Qiu, H.Q. Zhang, Y.L. Liu, and S.H. Liu, Phase Equilibria of the Cu-Zr-Si System at 750 and 900 °C, Calphad, 2020, 68, p 101727

    Article  Google Scholar 

  5. 5.

    K. Wada, J. Yamabe, Y. Ogawa, O. Takakuwa, T. Lijima, and H. Matsunaga, Comparative Study of Hydrogen-Induced Intergranular Fracture Behavior in Ni and Cu-Ni Alloy at Ambient and Cryogenic Temperatures, Mater. Sci. Eng. A Struct., 2019, 766, p 138349

    Article  Google Scholar 

  6. 6.

    C. Kim, B. Lim, B. Kim, U. Shim, S. Oh, B. Sung, J. Choi, J. Ki, and S. Baik, Strengthening of Copper Matrix Composites by Nickel-Coated Single-Walled Carbon Nanotube Reinforcements, Synth. Met., 2009, 159, p 424-429

    Article  Google Scholar 

  7. 7.

    Y. Iguchi, G.L. Katona, C. Cserháti, G.A. Langer, and Z. Erdélyi, On the Miscibility Gap of Cu-Ni System, Acta Mater., 2018, 148, p 49-54

    ADS  Article  Google Scholar 

  8. 8.

    Q.L. Chu, X.W. Tong, S. Xu, M. Zhang, F.X. Yan, and P. Cheng, The Formation of Intermetallics in Ti/Steel Dissimilar Joints WELDED by Cu-Nb Composite Filler, J. Alloys Compd., 2020, 828, p 154389

    Article  Google Scholar 

  9. 9.

    R. Kieffer, S. Windesch, and H. Nowotny, Impregnated Alloys of Sintered Nb and Ta, Metall, 1963, 17, p 669-677, in Russian

    Google Scholar 

  10. 10.

    A.A. Kodentsov, S.F. Dunaev, and E.M. Slyusarenko, Phase equilibria in Cu-Ni-(V, Nb, Ta, Mo) system at 1275K, Vestn. Mosk. Univ., Ser. 2: Khim., 1988, 43(3), p 313-316

    Google Scholar 

  11. 11.

    B. Hu, Y. Du, S.H. Liu, Y.L. Liu, L. Huang, and C.Y. Shi, A new thermodynamic database for multicomponent Cu alloys, in: R. Arroyave (Ed.), An overview of CALPHAD XLVII (Juriquilla, Queretaro, Mexico), Calphad, 2019, 67, p 101618

  12. 12.

    C.L. Qiu, B. Hu, J.Q. Zhou, P.L. Wu, Y. Liu, C.J. Wang, and Y. Du, The Phase Equilibria of the Cu-Cr-Ni and Cu-Cr-Ag Systems: Experimental Investigation and Thermodynamic Modeling, Calphad, 2020, 68, p 101734

    Article  Google Scholar 

  13. 13.

    C.L. Qiu, B. Hu, Y. Zhang, X.Y. Wang, Q.P. Wang, F.F. Min, and Y. Du, Experimental Investigation and Thermodynamic Modeling of the Cu-Ag-Si Ternary System, J. Chem. Thermodyn., 2020, 150, p 106172

    Article  Google Scholar 

  14. 14.

    Z.K. Liu, and Y. Wang, Computational Thermodynamics of Materials. Cambridge University Press, Cambridge, 2016.

    Google Scholar 

  15. 15.

    H.L. Lukas, S.G. Fries, and B. Sundman, Computational Thermodynamics: The CALPHAD Method. Cambridge University Press, Cambridge, 2007.

    Google Scholar 

  16. 16.

    A.T. Dinsdale, A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15, p 317-425

    Article  Google Scholar 

  17. 17.

    M. Hämäläinen, K. Jääskeläinen, R. Luoma, M. Nuotio, P. Taskinen, and O. Teppo, A Thermodynamic Analysis of the Binary Alloy Systems Cu-Cr, Cu-Nb and Cu-V, Calphad, 1990, 14(2), p 125-137

    Article  Google Scholar 

  18. 18.

    S. an Mey, S. an Mey, Thermodynamic Re-Evaluation of the Cu-Ni System, Calphad, 1992, 16(3), p 255-260

    Article  Google Scholar 

  19. 19.

    H. Chen, and Y. Du, Refinement of the Thermodynamic Modeling of the Nb-Ni System, Calphad, 2006, 30(3), p 308-315

    Article  Google Scholar 

  20. 20.

    H.W. King, H.W. King, Crystal Structures of the Elements at 25 °C, J. Phase Equilib., 1981, 2(3), p 401-402

    Google Scholar 

  21. 21.

    E. Paul, and L.J. Swartzendruber, The Fe-Nb (Iron-Niobium) System, Bull. Alloys Phase Diagr., 1986, 7, p 248-254

    Article  Google Scholar 

  22. 22.

    P. Nash, and A. Nash, The Nb-Ni (Niobium-Nickel) System, Bull. Alloys Phase Diagr., 1986, 7, p 124-130

    Article  Google Scholar 

  23. 23.

    M. Mathon, D. Connétable, B. Sundman, and J. Lacaze, Calphad-Type Assessment of the Fe-Nb-Ni Ternary System, Calphad, 2009, 33, p 136-161

    Article  Google Scholar 

  24. 24.

    H.L. Chen, Y. Du, H.H. Xu, Y. Liu, and J.C. Schuster, Experimental Investigation of the Nb-Ni Phase Diagram, J. Mater. Sci., 2005, 40, p 6019-6022

    ADS  Article  Google Scholar 

  25. 25.

    O. Redlich, and A.T. Kister, Thermodynamics of Nonelectrolyte Solutions, Ind. Eng. Chem., 1948, 40, p 345-348

    Article  Google Scholar 

  26. 26.

    Y.M. Muggianu, M. Gambino, and L.P. Bross, Comparison Between Calculated and Measured Thermodynamic Data of Liquid (Ag, Au, Cu)-Sn-Zn Alloys, J. Chim. Phys., 1975, 72, p 85-91

    Article  Google Scholar 

  27. 27.

    M. Hillert, and L.I. Staffansson, Regular-Solution Model for Stoichiometric Phases and Ionic Melts, Acta Chem. Scand., 1970, 24, p 3618-3626

    Article  Google Scholar 

  28. 28.

    B. Sundman, and J. Agren, A regular Solution Model for Phases with Several Components and Sublattices, Suitable for Computer Applications, J. Phys. Chem., 1981, 42, p 297-301

    Google Scholar 

  29. 29.

    B. Sundman, B. Jansson, and J.O. Andersson, The Databank System, Calphad, 1985, 9, p 153-190

    Article  Google Scholar 

Download references


The work support from the National Natural Science Foundation of China (No. 52071002), the National Natural Science Foundation of Anhui Province (No. 2008085QE200) and the Natural Science Research Projects of Colleges and Universities in Anhui Province (Grant No. KJ2019A0113) are greatly acknowledged.

Author information



Corresponding author

Correspondence to Biao Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Hu, B., Shi, Y. et al. Experimental Investigation and Thermodynamic Modeling of the Phase Equilibria in the Cu-Nb-Ni Ternary System. J. Phase Equilib. Diffus. (2021). https://doi.org/10.1007/s11669-021-00866-0

Download citation


  • CALPHAD approach
  • Cu-Nb-Ni system
  • EXperimental investigation
  • Phase equilibria
  • Thermodynamic modeling