Phase Equilibria of the Al–Cr–Ta Ternary System at 1000 and 1200 °C

Abstract

The isothermal sections of the Al–Cr–Ta ternary system at 1000 and 1200 °C have been determined by means of electron probe microanalysis and x-ray diffraction. The results show that eleven and nine three-phase regions are determined in the isothermal sections at 1000 °C and 1200 °C, respectively. No ternary compound exists at both two isothermal sections. The addition of Cr makes the Al69Ta39 phase be stable at 1000 °C. The Cr2Ta(HT) phase has a large composition range at both two isothermal sections. The experimental information obtained in the present work could be significant for alloy design and the complement of the thermodynamic database.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    J.R. Davis, ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, (2000)

  2. 2.

    D. Coutsouradis, A. Davin, and M. Lamberigts, D. Coutsouradis, A. Davin, and M. Lamberigts, Cobalt-Based Superalloys for Applications in Gas Turbines, Materials Science and Engineering, 1987, 88, p 11–19

    Article  Google Scholar 

  3. 3.

    J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, Cobalt-Base High-Temperature Alloys, Science, 2006, 312(5770), p 90–91

    ADS  Article  Google Scholar 

  4. 4.

    C.T. Sims, N.S. Stoloff, W.C.J.M. Hagel, Superalloys II, (1987)

  5. 5.

    H. Yu, S. Ukai, S. Hayashi, and N. Oono, H. Yu, S. Ukai, S. Hayashi, and N. Oono, Effect of Al Content on the High-Temperature Oxidation of Co-20Cr-(5, 10)Al Oxide Dispersion Strengthened Superalloys, Corros. Sci., 2017, 118, p 49–59

    Article  Google Scholar 

  6. 6.

    K. Frisk, and A. MarkströM, K. Frisk, and A. MarkströM, Effect of Cr and V on Phase Equilibria in Co–WC Based Hardmetals, Int. J. Mater. Res., 2008, 99(3), p 287–293

    Article  Google Scholar 

  7. 7.

    Y. Chen, C. Wang, J. Ruan, T. Omori, R. Kainuma, K. Ishida, and X. Liu, Y. Chen, C. Wang, J. Ruan, T. Omori, R. Kainuma, K. Ishida, and X. Liu, High-Strength Co–Al–V-Base Superalloys Strengthened by γ′-Co3(Al, V) with High Solvus Temperature, Acta Mater., 2019, 170, p 62–74

    ADS  Article  Google Scholar 

  8. 8.

    L. Zheng, G. Zhang, T.L. Lee, M.J. Gorley, Y. Wang, C. Xiao, and Z. Li, L. Zheng, G. Zhang, T.L. Lee, M.J. Gorley, Y. Wang, C. Xiao, and Z. Li, The Effects of Ta on the Stress Rupture Properties and Microstructural Stability of a Novel Ni-Base Superalloy for Land-Based High Temperature Applications, Mater. Des., 2014, 61, p 61–69

    Article  Google Scholar 

  9. 9.

    F.L. Reyes Tirado, J. Perrin Toinin, D.C. Dunand, γ+γ′ Microstructures in the Co-Ta-V and Co-Nb-V Ternary Systems, Acta Materialia, 151, 137-148 (2018)

  10. 10.

    W.W. Xu, S.L. Shang, C.P. Wang, T.Q. Gang, Y.F. Huang, L.J. Chen, X.J. Liu, and Z.K. Liu, W.W. Xu, S.L. Shang, C.P. Wang, T.Q. Gang, Y.F. Huang, L.J. Chen, X.J. Liu, and Z.K. Liu, Accelerating Exploitation of Co-Al-Based Superalloys from Theoretical Study, Mater. Des., 2018, 142, p 139–148

    Article  Google Scholar 

  11. 11.

    A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, A. Bauer, S. Neumeier, F. Pyczak, and M. Göken, Microstructure and Creep Strength of Different γ/γ′-Strengthened Co-Base Superalloy Variants, Scripta Mater., 2010, 63(12), p 1197–1200

    Article  Google Scholar 

  12. 12.

    S.M. Cardonne, P. Kumar, C.A. Michaluk, and H.D. Schwartz, S.M. Cardonne, P. Kumar, C.A. Michaluk, and H.D. Schwartz, Tantalum and Its Alloys, Int. J. Refract Metal Hard Mater., 1995, 13(4), p 187–194

    Article  Google Scholar 

  13. 13.

    Y. Liang, C. Guo, C. Li, and Z. Du, Y. Liang, C. Guo, C. Li, and Z. Du, Thermodynamic Modeling of the Al–Cr System, J. Alloy. Compd., 2008, 460(1), p 314–319

    Article  Google Scholar 

  14. 14.

    K. Mahdouk, and J.C. Gachon, K. Mahdouk, and J.C. Gachon, Thermodynamic Investigation of the Aluminum-Chromium System, Journal of Phase Equilibria, 2000, 21(2), p 157–166

    Article  Google Scholar 

  15. 15.

    V.T. Witusiewicz, A.A. Bondar, U. Hecht, J. Zollinger, V.M. Petyukh, O.S. Fomichov, V.M. Voblikov, and S. Rex, V.T. Witusiewicz, A.A. Bondar, U. Hecht, J. Zollinger, V.M. Petyukh, O.S. Fomichov, V.M. Voblikov, and S. Rex, Experimental study and Thermodynamic Re-Assessment of the Binary Al–Ta System, Intermetallics, 2010, 18(1), p 92–106

    Article  Google Scholar 

  16. 16.

    H. Okamoto, H. Okamoto, Al-Ta (Aluminum-Tantalum), Journal of Phase Equilibria, 2010, 31(6), p 578–579

    Article  Google Scholar 

  17. 17.

    Y. Du, and R. Schmid-Fetzer, Y. Du, and R. Schmid-Fetzer, Thermodynamic Modeling of the Al-Ta System, Journal of Phase Equilibria, 1996, 17(4), p 311–324

    Article  Google Scholar 

  18. 18.

    N. Dupin, and I. Ansara, N. Dupin, and I. Ansara, Thermodynamic Assessment of the Cr-Ta System, Journal of Phase Equilibria, 1993, 14(4), p 451–456

    Article  Google Scholar 

  19. 19.

    M. Venkatraman, and J.P. Neumann, M. Venkatraman, and J.P. Neumann, The Cr-Ta (Chromium-Tantalum) System, Bulletin of Alloy Phase Diagrams, 1987, 8(2), p 112–116

    Article  Google Scholar 

  20. 20.

    J. Pavlů, J. Vřešt’ál, M. Šob, Re-modeling of Laves Phases in the Cr–Nb and Cr–Ta Systems Using First-Principles Results, Calphad, 33(1), 179-186 (2009)

  21. 21.

    C.C. Zhao, S.Y. Yang, X.J. Liu, and C.P. Wang, C.C. Zhao, S.Y. Yang, X.J. Liu, and C.P. Wang, Experimental Determination of the Phase Equilibria in the Co–Cr–Ta Ternary System, J. Alloy. Compd., 2014, 608, p 118–125

    Article  Google Scholar 

  22. 22.

    C. Wang, Y. Liang, S. Yang, M. Yang, L. Li, J. Han, Y. Lu, X. Liu, Isothermal Sections of the Ni-Cr-Ta Ternary System at 1200 °C and 1300 °C, Metals, 9(7), (2019)

  23. 23.

    L. Machon, and G. Sauthoff, L. Machon, and G. Sauthoff, Deformation Behaviour of Al-Containing C14 Laves Phase Alloys, Intermetallics, 1996, 4, p 469–481

    Article  Google Scholar 

  24. 24.

    F. Stein, F. Stein, Consequences of Crystal Structure Differences between C14, C15, and C36 Laves Phase Polytypes for their Coexistence in Transition-Metal-Based Systems, Mater.Res. Soc., 2011, 1295, p 299–310

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to C. P. Wang or J. B. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C.P., Zheng, Z.C., Yang, S.Y. et al. Phase Equilibria of the Al–Cr–Ta Ternary System at 1000 and 1200 °C. J. Phase Equilib. Diffus. (2021). https://doi.org/10.1007/s11669-021-00862-4

Download citation

Keywords

  • Al–cr–ta
  • isothermal section
  • electron probe microanalysis