Experimental Liquidus Surface Projection and Isothermal Section at 1000 °C of the V-Ni-C System

Abstract

Twenty-three V-Ni-C alloys were produced and analysed in the as-cast condition, as well as after annealing at 1000 °C for 1000 h. The phases were identified using SEM–EDX and XRD. The extensions of the binary phases were determined. The liquidus surface projection was derived from the overall compositions, primary phases and the solidification sequences. Four invariant reactions on solidification were found. The isothermal section at 1000 °C was also derived, which included the ~ Ni2V4C ternary phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

References

  1. 1.

    S.G. Huang, K. Vanmeensel, L. Li, O. Van der Biest, and J. Vleugels, Influence of Starting Powder on the Microstructure of WC-Co Hardmetals Obtained by Spark Plasma Sintering, Mater. Sci. Eng., 2008, 475, p 87-91

    Article  Google Scholar 

  2. 2.

    E.K. Storms, The Refractory Carbides, Academic Press, New York, 1967

    Google Scholar 

  3. 3.

    C. Santafe and C. Borgianni, Study of the Oxidation Kinetics of Vanadium Carbide, Oxid. Met., 1975, 9, p 415-425

    Article  Google Scholar 

  4. 4.

    E. Lugscheider, O. Knotek, K. Bobzin, and S. Bärwulf, Tribological Properties, Phase Generation and High Temperature Phase Stability of Tungsten- and Vanadium-oxides Deposited by Reactive MSIP-PVD Process for Innovative Lubrication Applications, Surf. Coat. Technol., 2000, 133–134, p 362-368

    Article  Google Scholar 

  5. 5.

    I.C. Grigorescu, J. Ramirez, F. Salcedo, and C. Weil, Tribological Behavior of Vanadium Oxycarbide Coatings, Surf. Coat. Technol., 1997, 94, p 437-440

    Article  Google Scholar 

  6. 6.

    A. Ruize, I.C. Grigorescu, L. Matamoras, C. Rojas, and D. Morel, Graded Metal-carbide Composites Produced by Solid State Transformation, Int. J. Refract. Met. Hard Mater., 2009, 27, p 261-266

    Article  Google Scholar 

  7. 7.

    S. Luyckx, C. Osborne, L.A. Cornish, and D. Whitefield, Fine Grained WC-VC-Co Hard Metal, Powder Metall., 1996, 39, p 210-212

    Article  Google Scholar 

  8. 8.

    E.G. Obbard, S. Luyckx, S. Hamar-Thibault, and C.H. Allibert, Determination of the Composition Range Suitable to the Formation of WC-(V, W)Cx-Co Materials, Int. J. Refract. Met. Hard Mater., 2001, 19, p 349-357

    Article  Google Scholar 

  9. 9.

    T.W. Penrice, Alternative Binders for Hard Metals, J. Mat. Shaping Technol., 1987, 5, p 35-39

    Article  Google Scholar 

  10. 10.

    B. Wittmann, W. Schubert, and B. Lux, WC Grain Growth and Grain Growth Inhibition in Nickel and Iron Binder Hardmetals, Int. J. Refract. Met. Hard Mater., 2002, 20, p 51-60

    Article  Google Scholar 

  11. 11.

    H. Rong, Z. Penga, X. Rena, Y. Penga, C. Wanga, Z. Fua, L. Qi, and H. Miaob, Ultrafine WC–Ni Cemented Carbides Fabricated by Spark Plasma Sintering, Mater. Sci. Eng. A, 2012, 532, p 543-547

    Article  Google Scholar 

  12. 12.

    H. Engqvist, N. Axén, and S. Hogmark, Tribological Properties of Binderless Carbide, Wear, 1999, 232(2), p 157-162

    Article  Google Scholar 

  13. 13.

    A.M. Human and H.E. Exner, Electrochemical Behaviour of Tungsten Carbide Hardmetals, Mater. Sci. Eng., A, 1996, 209, p 180-191

    Article  Google Scholar 

  14. 14.

    H. Pollak, A. Fleischmann, S.B. Luyckx and A. Koursaris, Investigation of the Phases Present in Fe-V-C alloys by Mössbauer Spectroscopy and X-ray Diffraction, Nucl. Instrum. Methods Phys. Res., Sect. B, 1993, 76, pp. 270-272.

  15. 15.

    D.J. Whitefield, S. Luyckx, M.J. Witcomb and L.A. Cornish, Microstructure and Properties of Fine Grain WC-VC-Co Hard Metal with Cobalt Content Ranging from 10-15%, Proc.14th Int. Plansee. Semin., 1997, 2, pp. 477-484.

  16. 16.

    D. Giuntini, X. Wei, A.L. Maximenko, L. Weia, A.M. Ilyina, and E.A. Olevsky, Initial Stage of Free Pressureless Spark-Plasma Sintering of Vanadium Carbide: Determination of Surface Diffusion Parameters, Int. J. Refract. Met. Hard Mater., 2013, 41, p 501-506

    Article  Google Scholar 

  17. 17.

    A.O. Apata, T.N. Muobeleni, A.A. Fabuyide, E.N. Ogunmuyiwa, G.O. Rading, P.K. Jain, M.J. Witcomb, and L.A. Cornish, Development of VC-Ni Eutectic Alloys for Wear Resistance, Adv. Mater. Res., 2014, 1019, p 347-354

    Article  Google Scholar 

  18. 18.

    E.K. Storms and R.J. McNeal, The Vanadium-Vanadium Carbide System, J. Phys. Chem., 1962, 66, p 1401-1408

    Article  Google Scholar 

  19. 19.

    E. Rudy, S. Windisch, and C.E. Brukl, Thermodynamic Reassessment of the V-C System, Planseeber. Pulvermetall., 1968, 16, p 3-33

    Google Scholar 

  20. 20.

    O.N. Carlson, A.H. Ghaneya, and J.F. Smith, The C-V (Carbon-Vanadium) System, Bull. Alloy Phase Diagr., 1985, 6(2), p 115-124

    Article  Google Scholar 

  21. 21.

    L.M. Adelsberg and L.H. Cadoff, Chemical Diffusion and Phase Equilibria in the Vanadium-Carbon System above 1900 °C, J. Am. Ceram. Soc., 1968, 51(4), p 213-220

    Article  Google Scholar 

  22. 22.

    A. Ghaneya, Some Studies on the V-C System, Ph.D. Thesis, Iowa State University, Ames, IA, USA (1984).

  23. 23.

    B. Lee and D. Lee, A Thermodynamic Study on the V-C and Fe-V Systems, Calphad, 1991, 15, p 283-291

    Article  Google Scholar 

  24. 24.

    S. Huang, J. Vleugels, L. Li. and O. Biest, Experimental Investigation and Thermodynamic Assessment of the V-W-C System, J. Alloys Compd., 2005, 395, pp. 68-74.

  25. 25.

    J. Hu, C. Li, F. Wang, and W. Zhang, Thermodynamic Re-assessment of the V-C System, J. Alloys Compd., 2006, 421, p 120-127

    Article  Google Scholar 

  26. 26.

    V.N. Lipatnikov, A.I. Gusev, P. Ettmayer and W. Lengauer, Phase Transformations in Non-stiochiometric Vanadium Carbide, J. Phys.: Condens. Matter, 1999, 11, pp. 163-184.

  27. 27.

    V.N. Lipatnikov, A.I. Gusev, P. Ettmeier, and W. Lengauer, Order-disorder Phase Transformations and Specific Heat of Nonstoichiometric Vanadium Carbide, Phys. Solid State, 1999, 41, p 474-480

    ADS  Article  Google Scholar 

  28. 28.

    J.F. Smith, O.N. Carlson, and P.G. Nash, The Ni-V (Nickel-Vanadium) System, Bull. Alloy Phase Diagr., 1982, 3(3), p 342-348

    Article  Google Scholar 

  29. 29.

    H. Giebelhausen, The Systems Vanadium-Silicon, Nickel-Copper and Boron-Nickel, Z. Anorg. Chem., 1915, 91, p 251-262

    Article  Google Scholar 

  30. 30.

    W.B. Pearson, J.W. Christian, and W. Hume-Rothery, New Sigma-Phases in Binary Alloys of the Transition Elements of the First Long Period, Nature, 1951, 167, p 110

    ADS  Article  Google Scholar 

  31. 31.

    W.B. Pearson and W. Hume-Rothery, The Constitution and Structure of Ni–V Alloys in the Region 0–60 at% Vanadium, J. Inst. Met., 1952, 80, p 641-648

    Google Scholar 

  32. 32.

    W. Rostoker and A. Yamamoto, A Survey of Vanadium Binary Systems, Trans. ASM, 1954, 46, p 1136-1167

    Google Scholar 

  33. 33.

    H.P. Sttiwe, Description of the Sigma Phase as a Structure with Sphere Packing, Trans. TMS-AIME, 1959, 215, p 408-411

    Google Scholar 

  34. 34.

    S.T. Zegler and J.W. Downey, Ternary Cr3O-type Phases with Vanadium Alloys, Trans. Am. Inst. Min. Metall. Pet. Eng., 1963, 227, p 1407-1411

    Google Scholar 

  35. 35.

    A. Maldonado and K. Schubert, Crystal Structure Investigations in Some Alloy Systems Homologous and Quasihomologous to T5-T10, Z. Metallkd., 1964, 55, p 619-626

    Google Scholar 

  36. 36.

    B.C. Giessen and N.J. Grant, The Crystal Structure of VNi2, VPd2, VPt2 and Related AB2 Phases, J. Less Common Met., 1965, 8, p 114-119

    Article  Google Scholar 

  37. 37.

    R. Ruhl and M. Cohen, Metastable Extensions of Carbon Solubility in Nickel and Cobalt, Scr. Metall., 1967, 1, p 73-74

    Article  Google Scholar 

  38. 38.

    L.E. Tanner, The Ordering of Ni3V, Phys. Status Solidi B, 1968, 30, p 685-701

    ADS  Article  Google Scholar 

  39. 39.

    E.R. Stevens and O.N. Carlson, V-Ni System, Metall. Mater. Trans. B, 1970, 1(5), p 1267-1271

    ADS  Article  Google Scholar 

  40. 40.

    H.A. Moreen, R. Taggart, and D.H. Polonis, Vanadium-Nickel System, J. Mater. Sci., 1971, 6, p 1425-1432

    ADS  Article  Google Scholar 

  41. 41.

    M. Daire and M. Gerspacher, Précisions sur le Diagramme d’hquilibre Vanadium-Nickel Entre 0 et 40% de Nickel, J. Less-Common Metals, 1969, 17, p 334-335

    Article  Google Scholar 

  42. 42.

    S.K. Singh and K.P. Gupta, The Cr-Ni-V System, J. Phase Equilibria, 1995, 16(2), p 129-136

    Article  Google Scholar 

  43. 43.

    Zhixin Wang, Huiying Zhou, Zhongmin Wang, and Qingrong Yao, The 773 K Isothermal Section of the Nd–Ni–V Ternary System, J. Alloys and Comp., 2008, 458, p 425-427

    Article  Google Scholar 

  44. 44.

    Shunkang Pan, Huaiying Zhou, and Qin Zhou, Qingrong Yao and ZhongminWang, Isothermal Section of the Phase Diagram of the Ternary System Y-Ni–V at 773 K, J. Alloys and Comp., 2009, 471, p 119-121

    Article  Google Scholar 

  45. 45.

    Yan Zhong, Huaiying Zhou, Qingrong Yao, Chengying Tang and R.P. Zou, The Isothermal Section of the Gd–Ni–V Ternary System at 773K, J. Alloys and Comp., 2009, 470, pp. 199–201.

  46. 46.

    C.C. Zhao, S.Y. Yang, Y. Lu, Y.H. Guo, C.P. Wang, and X.J. Liu, Experimental Investigation and Thermodynamic Calculation of the Phase Equilibria in the Fe–Ni–V system, CALPHAD, 2014, 46, p 80-86

    Article  Google Scholar 

  47. 47.

    Lei Zou, Cuiping Guo, Changrong Li, and Du Zhenmin, Experimental Investigation and Thermodynamic Modeling of the Ni–Ti–V, CALPHAD, 2019, 64, p 97-114

    Article  Google Scholar 

  48. 48.

    E.G. Kabanova, V.N. Kuznetsov, and G.P. Zhmurko, Thermodynamic Modeling of Phase Equilibria in the Ni-V System, Russ. J. Phys. Chem. A, 2010, 84(5), pp. 755-759.

  49. 49.

    Lei Huang, Yafei Pan, Du Yong, Jiuxing Zhang, and Fenghua Luo, Thermodynamic Modeling of the Ni–Nb–V Ternary System, CALPHAD, 2019, 67, p 101673

    Article  Google Scholar 

  50. 50.

    A. Watson and F.H. Hayes, Some Experiences Modelling the Sigma Phase in the Ni–V System, J. Alloys and Comp., 2001, 320, p 199-206

    Article  Google Scholar 

  51. 51.

    Yafei Pan, Du Yong, Jian Lv, Tongxiang Liang, and Fenghua Luo, Reassessment of the Ni–V System and a New Thermodynamic Modeling of the Mo–Ni–V System, Thermochim. Acta, 2018, 661, p 137-146

    Article  Google Scholar 

  52. 52.

    Mehdi Noori and Bengt Hallstedt, Thermodynamic Modelling of the Ni-V System, CALPHAD, 2019, 65, p 273-281

    Article  Google Scholar 

  53. 53.

    M. Singleton and P. Nash, The C-Ni (Carbon-Nickel) System, Bull. Alloy Phase Diagr., 1989, 10(2), p 121-126

    Article  Google Scholar 

  54. 54.

    F. Edler, Precise Temperature Measurement Above 1000 °C Using Thermocouples, Proc. Estonian Acad. Sci. Eng., 2007, 13(4), p 310-319

    Google Scholar 

  55. 55.

    V.S. Telegus and Y.B. Kuz’ma, The Investigation of the Transition Metals of the Fourth with Carbon, Visn. L’viv. Derzh. Univ. Ser. Khim., 1971, 12, p 28-33

    Google Scholar 

  56. 56.

    H. Holleck and K. Biemüller, Herstellung and Eigenschaften Hochschmelzender Verbindungen and Systeme (Hartstoffe and Hartmettale) (1979) pp. 69-101.

  57. 57.

    H. Frey and H. Holleck, DTA Investigation of High Temperature Phase Equilibra in Ternary Transition Metal Carbon System, Proc. 4th, ICTA Conf., 1975, 1, pp. 339-348.

  58. 58.

    A.O. Apata, Investigation of the C-Ni-V Ternary Phase Diagram and Development of Abrasion-resistant Alloys, PhD Thesis, University of the Witwatersrand, Johannesburg (2014).

  59. 59.

    T.S. Muobeleni, Study of Eutectics in C-Ni-V System, 4th Year Project Report, University of the Witwatersrand, Johannesburg, 2013

    Google Scholar 

  60. 60.

    A.A. Fabuyide, Investigation of the C-Ni-V Ternary Phase Diagram and Development of an Optimum Wear-resistant Alloy, PhD Thesis, University of the Witwatersrand, Johannesburg (2018).

  61. 61.

    J. Howe, C. Rawn, L. Jones, and H. Ow, Improved Crystallographic Data for Graphite, Powder Diffr., 2003, 18(2), p 150-154

    ADS  Article  Google Scholar 

  62. 62.

    H.T. Takeshita, T. Oishi, and N.J. Kuriyama, Disproportionation of CaNi3 Hydride: Formation of New Hydride, CaNiH3, J. Alloys Compd., 2002, 333, p 266-273

    Article  Google Scholar 

  63. 63.

    D.P. Rodionov, I.V. Gervas’eva, Y.V. Klebnikova, V.A. Sazonova and B.K. Sokolov, Effect of Alloying and Heat Treatment of the Formation of Recrystallization Cube Texture in Nickel Alloys, Fiz. Met. Metalloved. (2005) 99, 88-98.

  64. 64.

    S.B. Prima, L.A. Tret’yachenko and G.I. Kostrygina, Isothermal Section of the Vanadium-Nickel-Molybdenum System at 1150 °C, Dopov. Akad. Nauk. Ukr. RSR, Ser. A: Fiz-Mat. Tekh. Nauki (1979) 229.

  65. 65.

    Natl. Bur. Stand. (U.S.) Monogr. (1971) 25 9, 58.

  66. 66.

    W. Koester and W. Gmoehling, Z. Metallkd., 1960, 51, p 385-391

    Google Scholar 

  67. 67.

    J. Rexer and D.T. Peterson, Ternary Metal-Carbon-Hydrogen Compounds of Some Transition Metals, IMD Spec. Rep. Ser., 1964, 10, p 327

    Google Scholar 

  68. 68.

    K. Cenzual, L.M. Gelato, M. Penzo and E. Parthe, Inorganic Structure Types with Revised Space Groups I, Acta Crystallogr., Sect. B: Struct. Sci. (1991) 47, 433-439.

  69. 69.

    Natl. Bur. Stand. (U.S.) Monogr. (1985) 25 21, 129.

  70. 70.

    G.F. Bastin and H.J.M. Heijligers, Quantitative Electron Probe Microanalysis of Carbon in Binary Carbides. I—Principles and Procedures, X-ray Spectrometry (1986) 5(2) pp. 135-141.

  71. 71.

    L. Ingemarsson and M. Halvarsson, SEM/EDX Analysis of Boron, A Case Study, High Temperature Corrosion Centre (HTC), Chalmers University of Technology, 31 January 2011.

  72. 72.

    A.E. Vladár and M.T. Postek, Electron Beam-Induced Sample Contamination in the SEM, Microsc. Microanal., 2005, 11(Suppl 2), p 764-765

    Google Scholar 

  73. 73.

    D. Hoyle, M. Malac, M. Trudeau, and P. Woo, UV Treatment of TEM/STEM Samples for Reduced Hydrocarbon Contamination, Microsc. Microanal., 2011, 17(Suppl 2), p 1026-1027

    ADS  Article  Google Scholar 

  74. 74.

    T. Tanaka, K.N. Ishihara, and P.H. Shingu, Formation of Metastable Phases of Ni-C and Co-C syStems by Mechanical Alloying, Metall. Trans. A, 1992, 23, p 2431-2435

    Article  Google Scholar 

  75. 75.

    G.I. Goldstein, D.E. Newberry, P. Echlin, D.C. Joy, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and x-Ray Microanalysis, Plenum Press, New York, 1981, p 56-59

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Carnegie Corporation of New York for supporting AMSEN, and the Department of Science and Innovation and the National Research Foundation, South Africa for supporting the DSI-NRF Centre of Excellence in Strong Materials, also to Mintek for access to research facilitates, and Mr Edson Muhuma for assistance with arc-melting. Mr R. van der Merwe of NECSA is thanked for help with EDX measurements.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Fabuyide.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fabuyide, A.A., Apata, A.O., Muobeleni, T.N. et al. Experimental Liquidus Surface Projection and Isothermal Section at 1000 °C of the V-Ni-C System. J. Phase Equilib. Diffus. (2021). https://doi.org/10.1007/s11669-020-00860-y

Download citation

Keywords

  • isothermal section at 1000 °C
  • liquidus surface
  • V-Ni-C system