Skip to main content
Log in

Thermodynamic Modeling of the Al-Ba and Ba-Ge Systems Supported by First-Principles Calculations

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The phase diagrams of Al-Ba and Ba-Ge systems are optimized by coupling the CALPHAD approach and first-principles calculations. The binary intermetallic compounds were treated as stoichiometric phases. The total energies of nine intermetallic compounds: Al4Ba, Al13Ba7, Al5Ba3, Al5Ba4, Ba2Ge, Ba5Ge3, BaGe, β-Ba3Ge4 and BaGe2 were calculated by first-principles calculation using density functional theory approximation as implemented in the VASP (Vienna Ab-initio Simulation Package) code and used in the CALPHAD approach to assess the two systems. The liquid solutions are described by the Redlich–Kister polynomial model. A set of thermodynamic parameters were obtained for the Al-Ba and Ba-Ge systems. The calculated phase diagrams and thermodynamic properties are in good agreement with most of the accuracy available data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Lundin and J.R. Wilson, Rare Earth Metals, Adv. Mater. Processes, 2000, 158, p 52-55

    Google Scholar 

  2. D. Ping, K. Hono, and A. Inoue, Microstructural Characterization of a Rapidly Solidified Ultrahigh Strength Al94.5Cr3Co1.5Ce1 Alloy, Metall. Mater. Trans. A, 2000, 31, p 607-614

    Article  Google Scholar 

  3. J. Wang, Y. Liu, S. Imhoff, N. Chen, D. Louzguine-Luzgin, A. Takeuchi, M. Chen, H. Kato, J. Perepezko, and A. Inoue, Enhance the Thermal Stability and Glass Forming Ability of Al-Based Metallic Glass by Ca Minor-Alloying, Intermetallics, 2012, 29, p 35-40

    Article  Google Scholar 

  4. E. Alberti, Investigation of the Aluminum-Barium System, Z. Metallkd., 1934, 26, p 6-9

    Google Scholar 

  5. K. Andress and E. Alberti, Röntgenographische Untersuchung der Legierungsreihe Aluminium-Barium, Z. Metallkd., 1935, 27, p 126-128

    Google Scholar 

  6. E.M. Flanigen, Ph.D. Thesis, 1952

  7. M. Lida, System Al-Ba, Nippon Kinzoku Gakkaish, 1953, 17, p 632-634

    Google Scholar 

  8. R.P. Elliott and F.A. Shunk, The Al-Ba (Aluminum-Barium) System, Bull. Alloy Phase Diagr., 1981, 2, p 351-353

    Article  Google Scholar 

  9. G. Bruzzone and F. Merlo, The Strontium-Aluminium and Barium-Aluminium Systems, J. Less Common Met., 1975, 39, p 1-6

    Article  Google Scholar 

  10. T.B. Massalski, O. Okamoto, ASM International, Binary Alloy Phase Diagrams, 2nd ed., ASM International, Materials Park, Ohio, 1990

    Google Scholar 

  11. M. Fornasini and G. Bruzzone, The Crystal Structure of the Ba7AL13 Phase, J. Less Common Met., 1975, 40, p 335-340

    Article  Google Scholar 

  12. M. Fornasini, The Crystal Structure of Ba4Al5, Acta Crystallogr. Sect. B: Struct. Crystallogr. Cryst. Chem., 1975, 31, p 2551-2552

    Article  Google Scholar 

  13. M. Fornasini, Ba3Al5, a Simple Atomic Arrangement Also Present in More Complex Structures, Acta Crystallogr. Sect. C, 1988, 44, p 1355-1357

    Article  Google Scholar 

  14. V. Itkin and C. Alcock, The Al-Ba (Aluminum-Barium) System, J. Phase Equilib., 1993, 14, p 518-524

    Article  Google Scholar 

  15. H. Otte, W. Montague, and D. Welch, X-Ray Diffractometer Determination of the Thermal Expansion Coefficient of Aluminum near Room Temperature, J. Appl. Phys., 1963, 34, p 3149-3150

    Article  ADS  Google Scholar 

  16. R. Hirst, A. King, and F. Kanda, The Barium-Strontium Equilibrium System, J. Phys. Chem., 1956, 60, p 302-304

    Article  Google Scholar 

  17. S.I. Kulichkina and B.P. Nikonov, Vapor Pressure and Heat of Formation of BaAl4, Russ. J. Phys. Chem., 1967, 41, p 1167-1169

    Google Scholar 

  18. B.P. Burylev, A.V. Vakhobov, and T.D. Dzhuraev, Thermodynamic Activities of the Components in Aluminum-Barium and Aluminum-Strontium Alloys, Russ. J. Phys. Chem., 1974, 48, p 809-811

    Google Scholar 

  19. V.N. Vigdorovich, A.V. Vakhobov, and Y.V. Plotnikov, The Vapour Pressure over Aluminum-Barium Alloys, Russ. J. Phys. Chem., 1972, 46, p 822-824

    Google Scholar 

  20. V.M. Nepochatov, E.V. Kiseleva, and A.A. Bundel, Heats of Formation of Aluminum-Barium Intermitallic Compounds, Russ. J. Phys. Chem., 1979, 53, p 588-589

    Google Scholar 

  21. M. Notin, B. Djamshidi, J.C. Gachon, and J. Hertz, Calorimetric Measurement of the Enthalpy of Formation of Some Al-Ba Alloys, Thermochim. Acta, 1982, 57, p 57-66

    Article  Google Scholar 

  22. S. Srikanth and K. Jacob, Thermodynamics of Aluminum-Barium Alloys, Metall. Trans. B, 1991, 22, p 607-616

    Article  Google Scholar 

  23. X. Bao, L. Liu, Y. Jiang, Y. Jiang, C. Mao, X. Li, and L. Zhang, Thermodynamic Assessment of the Al-Ba System, J. Phase Equilib. Diffus., 2016, 37, p 345-349

    Article  Google Scholar 

  24. V.G. Andrianov, K.A. Bolshakov, E.B. Sokolov, A.V. Chirkin, and P.I. Fedorov, Thermal Analysis of the Melting Diagram of the Germanium-Barium System, Russ. Inorg. Mater., 1966, 2, p 1784-1786

    Google Scholar 

  25. E. Sokolov, V. Glazov, and V. Prokofeva, Structural-Chemical Transformations in Melts of Peritectic Systems, IZVEST AKAD NAUK SSSR NEORG MATERIALY, 1970, 6, p 580-581

    Google Scholar 

  26. W. Carrillo-Cabrera, S. Budnyk, Y. Prots, and Y. Grin, Ba8Ge43 Revisited: A 2a′ × 2a′ × 2a′ Superstructure of the Clathrate-I, Type with Full Vacancy Ordering, Zeitschrift für Anorganische und Allgemeine Chemie, 2004, 630, p 2267-2276

    Article  Google Scholar 

  27. W. Carrillo-Cabrera, H. Borrmann, S. Paschen, M. Baenitz, F. Steglich, and Y. Grin, Ba6Ge25: Low-Temperature Ge-Ge Bond Breaking During Temperature-Induced Structure Transformation, J. Solid State Chem., 2005, 178, p 715-728

    Article  ADS  Google Scholar 

  28. H. Okamoto, Ba-Ge (Barium-Germanium), J. Phase Equilib. Diffus., 2007, 28, p 298

    Article  Google Scholar 

  29. M. Pani and A. Palenzona, The Phase Diagram of the Ba-Ge System, J. Alloys Compd., 2008, 462, p L9-L11

    Article  Google Scholar 

  30. V.K. Prokofieva and L.M. Pavlova, Phase Diagram of the Ge-Rich of the Ba-Ge System and Characterisation of Single-Phase BaGe4, J. Alloys Compd., 2014, 599, p 228-233

    Article  Google Scholar 

  31. K. Turban and H. Schäfer, Preparation and Crystal Structure of Ba2Ge, Zeitschrift für Naturforschung B, 1973, 28, p 220-222

    Article  Google Scholar 

  32. R. Nesper and F. Zürcher, Crystal structure of pentabarium trigermanide, Ba5Ge3, Z. Kristallogr., 1999, 214, p 22

    Google Scholar 

  33. W. Rieger and E. Parthé, Alkaline Earth Silicides, Germanides and Stannides with CrB Structure Type, Acta Crystallogr. A, 1967, 22, p 919-922

    Article  Google Scholar 

  34. F. Zürcher and R. Nesper, Ba3Ge4: Polymerization of Zintl Anions in the Solid and Bond Stretching Isomerism, Angew. Chem. Int. Ed., 1998, 37, p 3314-3318

    Article  Google Scholar 

  35. J. Evers, G. Oehlinger, and A. Weiss, Kristallstruktur von Bariumdigermanid bei hohen Drücken/Crystal Structure of Bariumdigermanide at High Pressures, Zeitschrift für Naturforschung B, 1977, 32, p 1352-1353

    Article  Google Scholar 

  36. H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza, and L. Häming, Preparation and Structure of a New Germanium Clathrate, Ba24Ge100, J. Solid State Chem., 2000, 151, p 117-121

    Article  ADS  Google Scholar 

  37. W. Carrillo-Cabrera, J. Curda, H. Von Schnering, S. Paschen, and Y. Grin, Crystal Structure of Hexabarium Pentacosagermanide, Ba6Ge25, Zeitschrift für Kristallographie-New Crystal Structures, 2000, 215, p 207-208

    Google Scholar 

  38. U. Aydemir, L. Akselrud, W. Carrillo-Cabrera, C. Candolfi, N. Oeschler, M. Baitinger, F. Steglich, and Y. Grin, BaGe5: A New Type of Intermetallic Clathrate, J. Am. Chem. Soc. , 2010, 132, p 10984-10985

    Article  Google Scholar 

  39. M. Straumanis and E. Aka, Lattice Parameters, Coefficients of Thermal Expansion, and Atomic Weights of Purest Silicon and Germanium, J. Appl. Phys., 1952, 23, p 330-334

    Article  ADS  Google Scholar 

  40. W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140, p A1133-A1138

    Article  ADS  MathSciNet  Google Scholar 

  41. G. Kresse and J. Furthmüller, Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set, Phys. Rev. B, 1996, 54, p 11169-11186

    Article  ADS  Google Scholar 

  42. G. Kresse and J. Furthmüller, Efficiency of Ab Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set, Comput. Mater. Sci., 1996, 6, p 15-50

    Article  Google Scholar 

  43. G. Kresse and D. Joubert, From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method, Phys. Rev. B, 1999, 59, p 1758-1775

    Article  ADS  Google Scholar 

  44. P.E. Blöchl, Projector Augmented-Wave Method, Phys. Rev. B, 1994, 50, p 17953-17979

    Article  ADS  Google Scholar 

  45. J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, p 3865-3868

    Article  ADS  Google Scholar 

  46. G. Kresse, M. Marsman, and J. Furthmüller, VASP the Guide, University of Vienna, Vienna, 2012

    Google Scholar 

  47. C. Colinet, Ab-Initio Calculation of Enthalpies of Formation of Intermetallic Compounds and Enthalpies of Mixing of Solid Solutions, Intermetallics, 2003, 11, p 1095-1102

    Article  Google Scholar 

  48. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals, Academic Press, Cambridge, 1970

    Google Scholar 

  49. N. Saunders and A.P. Miodownik, CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, Elsevier, Amsterdam, 1998

    Google Scholar 

  50. A.T. Dinsdale, SGTE Data for Pure Elements, Calphad, 1991, 15, p 317-425

    Article  Google Scholar 

  51. O. Redlich and A.T. Kister, Thermodynamics of Nonelectrolyte Solutions—x-y-t Relations in a Binary System, Ind. Eng. Chem., 1948, 40, p 341-345

    Article  Google Scholar 

  52. Y. Djaballah, Modélisation Des Solutions Liquide et Solides Non Stœchiométriques Des Alliages Binaires et Ternaires, Ph.D. Thesis, 2005

  53. A. Belgacem-Bouzida, Y. Djaballah, and M. Notin, Calorimetric Measurement of the Intermetallic Compounds Cr3Ga and CrGa4 and Thermodynamic Assessment of the (Cr-Ga) System, J. Alloys Compd., 2005, 397, p 155-160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Djaballah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhafid, R., Belgacem Bouzida, A., Djaballah, Y. et al. Thermodynamic Modeling of the Al-Ba and Ba-Ge Systems Supported by First-Principles Calculations. J. Phase Equilib. Diffus. 40, 195–205 (2019). https://doi.org/10.1007/s11669-019-00714-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-019-00714-2

Keywords

Navigation