Skip to main content
Log in

Experimental Thermodynamics and Surface Properties of Ag-Cu-Ge Solder/Braze Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Ag-based alloys have industrial importance in relation to their use as high-temperature solders in jewellery or braze alloys for thermoelectric modules. Good wetting properties and a tarnish-resistance of Ag-Ge and Ag-Cu-Ge alloys together with appropriate mechanical properties make them good candidates for bonding sterling silver (Ag-7.5Cu, in wt.%). The melting temperature and the heat of melting of Ag-Cu, Ag-Ge and Ag-Cu-Ge eutectic alloys have been measured by differential scanning calorimetry. From a technological point of view, particular attention should be paid to the surface tension, a key property of the joining processes. The aim of this study is to correlate the thermodynamic properties of the Ag-Cu-Ge system and its subsystems with their surface properties and to compare the model predicted property values to the data available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.R. Pinasco, G. Pellati, A. Saccone, G. Borzone, E. Ricci, R. Novakovic, A. Passerone, “Leghe a base di argento e procedimenti per la loro realizzazione, particolarmente per la fabbricazione di gioielli”, Patent N. GE2006A000118, 2006 (in Italian)

  2. S. Delsante, D. Li, R. Novakovic, G. Borzone, Design of Ag-Ge-Zn Braze/Solder Alloys: Experimental Thermodynamics and Surface Properties, J. Min. Metall. Sect. B-Metall., 2017, 53(3) B, p 295–302

  3. Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology, Group III, Vol. 37, Condensed Matter: Phase Diagrams and Physical Properties of Nonequilibrium Alloys, Sub-volume B, Physical Properties of Ternary Amorphous Alloys, Part 1 Systems from Ag-Al-Ca to Au-Pd-Si, Springer, 2011, pp 1–5

  4. E. Oktay, The Thermodynamic Activities of Silver in Liquid Silver-Copper-Germanium alloys, Z. Metallkde, 1994, 85, p 824-827

    Google Scholar 

  5. H. Haung, H. Zhang, and Y. Wang, Vacuum Brazing of NiTi Alloy by AgCu Eutectic Filler, Mater. Sci. Technol., 2009, 25(12), p 1495-1497

    Article  Google Scholar 

  6. G. Lin, J. Huang, and H. Zhang, Joints of Carbon Fiber-Reinforced SiC Composites to Ti-Alloy Brazed by Ag-Cu-Ti Short Carbon Fibers, J. Mater. Proc. Technol., 2007, 189(1–3), p 256-261

    Article  Google Scholar 

  7. D. Bridges, C. Ma, Z. Palmer, S. Wang, Z. Feng, and A. Hua, Laser Brazing of Inconel® 718 Using Ag and Cu-Ag Nanopastes as Brazing Materials, J. Mater. Proc. Technol., 2017, 249, p 313-324

    Article  Google Scholar 

  8. S.W. Chen, J.C. Wang, and L.C. Chen, Interfacial Reactions at the Joints of PbTe Thermoelectric Modules Using Ag-Ge Braze, Intermetallics, 2017, 83, p 55-63

    Article  Google Scholar 

  9. V.B. Rajkumar and S.-W. Chen, Phase Equilibria and Thermodynamic Descriptions of Ag-Ge and Ag-Ge-Ni Systems, J. Electron. Mater., 2018, 47(7), p 3666-3677

    Article  ADS  Google Scholar 

  10. R.J. Nastasi-Andrews and R.E. Hummel, Optical Properties and Electronic Structure of Dilute Cu-Au, Cu-Zn, Cu-Al, Cu-Ga, Cu-Si, Cu-Ge, Cu-Sn, and Cu-As Alloys, Phys. Rev. B, 1977, 16, p 4314-4323

    Article  ADS  Google Scholar 

  11. S. Oktyabrsky, M. Borek, M. Aboelfotoh, and J. Narayan, Investigation of Cu-Ge/GaAs Metal-Semiconductor Interfaces for Low Resistance Ohmic Contacts, MRS Proc., 1996, 448, p 383

    Article  Google Scholar 

  12. A.G. Baca, F. Ren, J.C. Zolper, R.D. Briggs, and S.J. Pearton, A Survey of Ohmic Contacts to III-V Compound Semiconductors, Thin Solid Films, 1997, 308–309, p 599-606

    Article  Google Scholar 

  13. H. Geaney, C. Dickinson, C.A. Barrett, and K.M. Ryan, High Density Germanium Nanowire Growth Directly from Copper Foil by Self-Induced Solid Seeding, Chem. Mater., 2011, 23, p 4838-4843

    Article  Google Scholar 

  14. A. Prince, Silver-Copper-Germanium, Ternary Alloys—A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams, vol. 1, Weinheim, Fed. Rep. Germany/VCH, New York, 1988, pp. 563–567

  15. A.M. Akhmetova, A.T. Dinsdale, A.V. Khvan, V.V. Cheverikin, A.V. Kondratyev, and D.O. Ivanov, Experimental Investigations of the Ag-Cu-Ge System, J. Alloys Compd., 2015, 630, p 84-94

    Article  Google Scholar 

  16. C. Guo, L. Zou, C. Li, and Z. Du, Experimental Investigation and Thermodynamic Modeling of the Ag-Cu-Ge System, Metall. Mater. Trans. A, 2017, 48A, p 4965-4976

    Article  ADS  Google Scholar 

  17. E. Nagels, J. Van Humbeeck, and L. Froyen, The Ag-Cu-Ge Ternary Phase Diagram, J. Alloys Compd., 2009, 482, p 482-486

    Article  Google Scholar 

  18. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (Eds.), Binary Alloy Phase Diagrams, 2nd Edition., Vols. 1–2, ASM International, Materials Park, Ohio, 1990, pp 28–29, 39–42, 1414–1416

  19. J. Brillo, G. Lauletta, L. Vaianella, E. Arato, D. Giuranno, R. Novakovic, and E. Ricci, Surface Tension of Liquid Ag-Cu Binary Alloys, ISIJ Int., 2014, 54(9), p 2115-2119

    Article  Google Scholar 

  20. M. Brunet, J.C. Joud, N. Eustathopoulos, and P. Desré, Tension Superficielle du Germanium et d’alliages Argent-Germanium a l’état Liquide, J. Less Common Met., 1977, 51, p 69-77 (in French)

    Article  Google Scholar 

  21. S. Gruner, M. Köhler, and W. Hoyer, Surface Tension and Mass Density of Liquid Cu-Ge Alloys, J. Alloys Compd., 2009, 482, p 335-338

    Article  Google Scholar 

  22. J.A.V. Butler, The Thermodynamics of the Surfaces of Solutions, Proc. R. Soc. Lond. A, 1932, 135, p 348-375

    Article  ADS  MATH  Google Scholar 

  23. I. Egry, D. Holland-Moritz, R. Novakovic, E. Ricci, R. Wunderlich, and N. Sobczak, Thermophysical Properties of Liquid AlTi-Based Alloys, Int. J. Thermophys., 2010, 31, p 949-965

    Article  ADS  Google Scholar 

  24. A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317-425

    Article  Google Scholar 

  25. W.J. Boettinger, U.R. Kattner, K.-W. Moon, J.H. Perepezko, DTA and Heat-Flux DSC Measurements of Alloy Melting and Freezing, 2006, Natl. Inst. Stand Technol., Washington, DC

  26. S. Delsante, R. Novakovic, and G. Borzone, Synthesis, Characterization and Thermal Stability of SnAg and SnAgCu Nanoparticles, J. Alloys Compd., 2018, 747, p 385-393

    Article  Google Scholar 

  27. I. Egry, E. Ricci, R. Novakovic, and S. Ozawa, Surface Tension of Liquid Metals and Alloys—Recent Developments, Adv. Colloid Interface Sci., 2010, 159, p 198-212

    Article  Google Scholar 

  28. Yu Plevachuk, V. Sklyarchuk, G. Gerbeth, S. Eckert, and R. Novakovic, Surface Tension and Density of Liquid Bi-Pb, Bi-Sn and Bi-Pb-Sn Eutectic Alloys, Surf. Sci., 2011, 605, p 1034-1042

    Article  ADS  Google Scholar 

  29. R. Novakovic and D. Zivkovic, Thermodynamics and Surface Properties of Liquid Ga-X (X = Sn, Zn) Alloys, J. Mater. Sci., 2005, 40, p 2251-2257

    Article  ADS  Google Scholar 

  30. R. Novakovic, E. Ricci, D. Giuranno, and A. Passerone, Surface and Transport Properties of Ag-Cu Liquid Alloys, Surf. Sci., 2005, 576, p 175-187

    Article  ADS  Google Scholar 

  31. P. Fima and R. Novakovic, Surface Tension Modelling of Liquid Cd-Sn-Zn Alloys, Philos. Mag., 2018, 13, p 1-17

    Google Scholar 

  32. C. Costa, S. Delsante, G. Borzone, D. Zivkovic, and R. Novakovic, Thermodynamic and Surface Properties of Liquid Co-Cr-Ni Alloys, J. Chem. Thermodyn., 2014, 69, p 73-84

    Article  Google Scholar 

  33. Yu Plevachuk, V. Sklyarchuk, S. Eckert, G. Gerbeth, and R. Novakovic, Thermophysical Properties of the Liquid Ga-In-Sn Eutectic Alloy, J. Chem. Eng. Data, 2014, 59, p 757-763

    Article  Google Scholar 

  34. N. Saunders and A.P. Miodownik, CALPHAD Calculation of Phase Diagrams, A Comprehensive Guide, Pergamon Materials Series, Elsevier, Oxford, 1998

    Google Scholar 

  35. W. Zhai, Z.-Y. Hong, C.X. Mei, W.L. Wang, and B.B. Wei, Dynamic Solidification Mechanism of Ternary Ag-Cu-Ge Eutectic Alloy Under Ultrasonic Condition, Sci. China Phys. Mech. Astron., 2013, 56(2), p 462-473

    Article  ADS  Google Scholar 

  36. C. Cagran, B. Wilthan, and G. Pottlacher, Enthalpy, Heat of Fusion and Specific Electrical Resistivity of Pure Silver, Pure Copper and the Binary Ag-28Cu Alloy, Thermochim. Acta, 2006, 445, p 104-110

    Article  Google Scholar 

  37. GUM 1995 with minor corrections, Evaluation of measurement data - Guide to the expression of uncertainty in measurement, First edition September 2008, Corrected version 2010, © JCGM 2008, pp. 1–120 (http://www.european-accreditation.org/pdf/EA-4-02ny.pdf)

  38. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelly, Selected Values of Thermodynamics Properties of Binary Alloys, ASM International, Metals Park, OH, 1973, pp 44–49, 57–61, 744–745.

  39. S. Delsante, G. Borzone, R. Novakovic, Experimental Thermodynamics, Surface and Transport Properties of Liquid Ag-Ge Alloys, Thermochim. Acta, submitted

  40. J. Wang, Y.J. Liu, C.Y. Tang, L.B. Liu, H.Y. Zhou, and Z.P. Jin, Thermodynamic Description of the Au-Ag-Ge Ternary System, Thermochim. Acta, 2011, 512, p 240-246

    Article  Google Scholar 

  41. R. Castanet, Y. Claire, and M. Laffitte, Enthalpie de formation à 1280 K des alliages liquides d’argent avec le germanium, l’étain et le plomb, J. Chim. Phys., 1969, 66, p 1276-1285 (in French)

    Article  Google Scholar 

  42. L. Martin-Garin, C. Chatillon, and M. Allibert, Mass Spectrometry Measurements of Activities in Liquid Ag-Ge Alloys: Critical Assessment of the Thermodynamics of the Ag-Ge System and Short Distance Order, J. Less Common Met., 1979, 63, p 9-23

    Article  Google Scholar 

  43. M.-C. Bellissent-Funel, P.J. Desré, R. Bellissent, and G. Tourand, Structure of Liquid Eutectic Ag-Ge by Neutron Diffraction, J. Phys. F: Metal Phys., 1977, 7(12), p 2485-2494

    Article  ADS  Google Scholar 

  44. S.K. Sinha, R.N. Singh, Small-angle structure and atomic order in Ge- and Si-based liquid alloys, J. Phys.: Condens. Matter., 1991, 3, p 8745–8750

  45. V.T. Witusiewicz, U. Hecht, S.G. Fries, and S. Rex, The Ag-Al-Cu System: Part I: Reassessment of the Constituent Binaries on the Basis of New Experimental Data, J. Alloys Compd., 2004, 385(1–2), p 133-143

    Google Scholar 

  46. K. Fitzner, Q. Guo, J. Wang, and O.J. Kleppa, Enthalpies of Liquid–Liquid Mixing in the Systems Cu-Ag, Cu-Au and Ag-Au by Using an In Situ Mixing Device in a High Temperature Single-Unit Differential Calorimeter, J. Alloys Compd., 1999, 291, p 190-200

    Article  Google Scholar 

  47. S.M. Howard, Direct Activity Measurements in Liquid Ag-Cu Alloys Using a Valved Knudsen Cell-Mass Spectrometer System, Met. Trans. B, 1989, 20B, p 845-852

    Article  Google Scholar 

  48. J. Wang, S. Jin, C. Leinenbach, and A. Jacot, Thermodynamic Assessment of the Cu-Ge Binary System, J. Alloys Compd., 2010, 504, p 159-165

    Article  Google Scholar 

  49. R.N. Singh and N.H. March, Intermetallic Compounds, Principles and Practice, 1, J.H. Westbrook and R.L. Fleischer, Ed., Wiley, New York, 1995, p 661-686

    Google Scholar 

  50. R. Castanet, Enthalpy of Formation of Cu-Ag-Si and Cu-Ag-Ge Liquid Alloys, Z. Metallkde., 1984, 75(1), p 41-45

    Google Scholar 

  51. S. Takeuchi, O. Uemura, S. Ikeda, On the Heat of Mixing of Liquid Copper Alloys, Sci. Rept. Res. Inst. Tohoku Univers. Ser. A 25 (1974) pp 41–55

  52. B. Predel and D.W. Stein, Thermodynamische Analyse der binären Systeme des Germaniums mit Kupfer, Silber und Gold, Zeitschrift fuer Naturforschung - Section A Journal of Physical Sciences, 1971, 26(4), p 722-734

    ADS  Google Scholar 

  53. G. Sodeck, P. Entner, and A. Neckel, Mass Spectrometric Determination of Thermodynamic Activities: The Liquid System Copper-Germanium, High Temp. Sci., 1970, 2, p 311-321

    Google Scholar 

  54. S. Amore, D. Giuranno, R. Novakovic, E. Ricci, R. Nowak, and N. Sobczak, Thermodynamic and Surface Properties of Liquid Ge-Si Alloys, Calphad, 2014, 44, p 95-101

    Article  Google Scholar 

  55. T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, 1st ed., Clarendon Press, Oxford, 1993

    Google Scholar 

  56. N.A. Vatolin, V.F. Ukhov, V.P. Chenisov, Free surface energy of silver-based binary eutectic melts, Akad. Nauk SSSR, UraI. Nauchn. Tsentr, Tr. Inst. Metall., 1972, 27, p 86–91 (in Russian)

  57. B. Gallois and C.H.P. Lupis, Surface Tensions of Liquid Ag-Au-Cu Alloys, Metall. Trans. B, 1981, 12(4), p 679-689

    Article  Google Scholar 

  58. G.P. Williams and C. Norris, Surface Enrichment and Electronic Structure of Liquid Ag and Ag-Cu Alloys, Philos. Mag., 1976, 34(5), p 851-860

    Article  ADS  Google Scholar 

  59. W. Krause, F. Sauerwald, and M. Michalke, Die Oberflächenspannung geschmolzener Metalle und Legierungen Die Oberflächenspannung von Gold, Zink, Gold-Kupfer-, Silber-Kupfer- und Eisenlegierungen, Z. Anorg. Chem., 1929, 181, p 353-371

    Article  Google Scholar 

  60. M.M.A. Bricard, N. Eustathopoulos, J.-C. Joud, P. Desré, Tension superficielle de l’alliage liquide Ag-Cu par la méthode de la goutte posée, C.R. Acad. Sc. Paris, 1973, Série C, 276, p 1613

  61. P. Sebo, B. Gallois, C.H.P. Lupis, Metall., The Surface Tension of Liquid Silver-Copper Alloys, Metall. Trans., 1977, 8B, p 691–693

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rada Novakovic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special issue of the Journal of Phase Equilibria and Diffusion in honor of Prof. Jan Vrestal’s 80th birthday. This special issue was organized by Prof. Andrew Watson, Coventry University, and Dr. Ales Kroupa, Institute of Physics of Materials, Brno, Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delsante, S., Borzone, G. & Novakovic, R. Experimental Thermodynamics and Surface Properties of Ag-Cu-Ge Solder/Braze Alloys. J. Phase Equilib. Diffus. 40, 115–125 (2019). https://doi.org/10.1007/s11669-019-00709-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-019-00709-z

Keywords

Navigation