Advertisement

Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 3, pp 280–289 | Cite as

Experimental Investigation of the Isothermal Section of the Fe-Mn-Sn System at 723 K

  • Ya Liu
  • Bin Zhou
  • Changjun Wu
  • Haoping Peng
  • Jianhua Wang
  • Xuping Su
Article
  • 125 Downloads

Abstract

Phase relationships in the Fe-Mn-Sn ternary system at 723 K were investigated using equilibrated approach. More than 40 alloys were prepared by arc-melting method and examined by x-ray powder diffraction, scanning electron microscopy and energy dispersive spectroscopic. The existence of five binary compounds FeSn, FeSn2, MnSn2, Mn3Sn2, Mn3Sn and one intermediate solid solution γ(Fe, Mn) have been confirmed in this system. FeSn2 and MnSn2 form continuous solid solution (Fe1−x, Mn x )Sn2 (0 ≤ X ≤ 1) and the lattice parameters of (Fe, Mn)Sn2 reduced linearly with increasing of Fe content. At 723 K, the maximum solid solubilities of Fe in αMn, βMn, Mn3Sn, Mn3Sn2 phases and Mn in FeSn, αFe are about 25, 34.8, 37.3, 46.2 at.% Fe and 26.8, 5.5 at.% Mn respectively. The solid solubilities of γ(Fe, Mn) ranged from 42.1 to 78.1 at.% Fe and the limited solubility of Sn is around 3 at.%. The isothermal section consists of 6 three-phase regions, 13 two-phase regions and 9 single-phase regions. No ternary compound was found at 723 K in this system.

Keywords

Fe-Mn-Sn system intermetallics isothermal section phase equilibria 

Notes

Acknowledgments

Financial supports from the National Science Foundation of China (Grant Nos. 51471037 and 51671036) and projects funded by the Priority Academic Program Development of Jiangsu higher education institutions and by the Education Department of Jiangsu Province (17KJA430001) are greatly acknowledged. This work has also been sponsored by Qing Lan Project.

References

  1. 1.
    Q. Recour, T. Mazet, and B. Malaman, Magnetic and Magnetocaloric Properties of Mn3−xFexSn2 (0.1 ≤ x ≤ 0.9), J. Phys. D Appl. Phys., 2008, 41(18), p 185002ADSCrossRefGoogle Scholar
  2. 2.
    Q. Recour, T. Mazet, and B. Malaman, Magnetocaloric Properties of Mn3Sn2 from Heat Capacity Measurements, J. Appl. Phys., 2009, 105, p 033905ADSCrossRefGoogle Scholar
  3. 3.
    Q. Recour, V. Ban, Z. Gercsi, T. Mazet, M. Francois, and B. Malaman, Magnetic Structures of Mn3−xFexSn2: An Experimental and Theoretical Study, Phys. Rev. B., 2013, 88(5), p 054429ADSCrossRefGoogle Scholar
  4. 4.
    V. Franco, J.S.J.S. Blázquez, B. Ingale, and A. Conde, The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models, Annu. Rev. Mater. Res., 2012, 42(42), p 305-342ADSCrossRefGoogle Scholar
  5. 5.
    E. Brück, O. Tegus, D.T.C. Thanh, and K.H.J. Buschow, Magnetocaloric Refrigeration Near Room Temperature (Invited), J. Magn. Magn. Mater., 2007, 310(2), p 2793-2799ADSCrossRefGoogle Scholar
  6. 6.
    J.S. Kouvel, Exchange Anisotropy and Long-Range Magnetic Order in the Mixed Intermetallic Compounds (Mn, Fe)3Sn, J. Appl. Phys., 1965, 36(3), p 980-981ADSCrossRefGoogle Scholar
  7. 7.
    M.R. Felez, A.A. Coelho, and S. Gama, Magnetic Properties of Mn3−xFexSn Compounds with Tuneable Curie Temperature by Fe Content for Thermomagnetic Motors, J. Magn. Magn. Mater., 2017, 444, p 280-283ADSCrossRefGoogle Scholar
  8. 8.
    H. Zhang, X. Zhang, M. Qian, L. Wei, D. Xing, J. Sun, and L. Geng, Enhanced Magnetocaloric Effects of Ni-Fe-Mn-Sn Alloys Involving Strong Metamagnetic Behavior, J. Alloys Compd., 2017, 715, p p206-p213CrossRefGoogle Scholar
  9. 9.
    Z.T. Zhang, I.R. Sohn, F.S. Pettit, G.H. Meier, and S. Sridhar, Investigation of the Effect of Alloying Elements and Water Vapor Contents on the Oxidation and Decarburization of Transformation-Induced Plasticity Steels, Metall. Mater. Trans. B, 2009, 40, p 567-584CrossRefGoogle Scholar
  10. 10.
    E. Clauberg, C. Uebing, and H.J. Grabke, Effect of Segregated Antimony on the Oxidation of Fe-4% Sb Single Crystals, Appl. Surf. Sci., 1999, 143, p 206-214ADSCrossRefGoogle Scholar
  11. 11.
    Y.L. Zhang, Y.Y. Zhang, F.H. Yang, and Z.T. Zhang, Effect of Alloying Elements (Sb, B) on Recrystallization and Oxidation of Mn-Containing IF Steel, J. Iron. Steel Res. Int., 2013, 20, p 39-56CrossRefGoogle Scholar
  12. 12.
    L. Cho, M.S. Kim, Y.H. Kim, and B.C.D. Cooman, Influence of Minor Alloying Elements on Selective Oxidation and Reactive Wetting of CMnSi TRIP Steel during Hot Dip Galvanizing, Metall. Mater. Trans. A, 2014, 45, p 4484-4498CrossRefGoogle Scholar
  13. 13.
    L. Cho, E.J. Seo, G.S. Jung, D.W. Suh, and B.C.D. Cooman, Surface Selective Oxidation of Sn-Added CMnSi TRIP Steel, Metall. Mater. Trans. A, 2016, 47, p 1705-1719CrossRefGoogle Scholar
  14. 14.
    W. Huang, An Assessment of the Fe-Mn System, Calphad, 1989, 13, p 243-252CrossRefGoogle Scholar
  15. 15.
    L. Byeong-Joo and L.D. Nyung, A Thermodynamic Study on the Mn-C and Fe-Mn Systems, Calphad, 1989, 13, p 345-354CrossRefGoogle Scholar
  16. 16.
    V.T. Witusiewicz, F. Sommer, and E.J. Mittemeijer, Reevaluation of the Fe-Mn Phase Diagram, J. Phase Equilib., 2004, 25, p 346-354CrossRefGoogle Scholar
  17. 17.
    J. Nakano and P.J. Jacques, Effects of the Thermodynamic Parameters of the Hcp Phase on the Stacking Fault Energy Calculations in the Fe-Mn and Fe-Mn-C Systems, Calphad, 2010, 34, p 167-175CrossRefGoogle Scholar
  18. 18.
    D. Djurovic, B. Hallstedt, J.V. Appen, and R. Dronskowski, Thermodynamic Assessment of the Fe-Mn-C System, Calphad, 2011, 35, p 479-491CrossRefGoogle Scholar
  19. 19.
    H.D. Nüssler, O.V. Goldbeck, and P.J. Spencer, A Thermodynamic Assessment of the Iron-Tin System, Calphad, 1979, 3, p 19-26CrossRefGoogle Scholar
  20. 20.
    K.C. Kumar, P. Wollants, and L. Delaey, Thermodynamic Evaluation of Fe-Sn Phase Diagram, Calphad, 1996, 20, p 139-149CrossRefGoogle Scholar
  21. 21.
    Y.C. Huang, W. Gierlotka, and S.W. Chen, Sn-Bi-Fe Thermodynamic Modeling and Sn-Bi/Fe Interfacial Reactions, Intermetallics, 2010, 18, p 984-991CrossRefGoogle Scholar
  22. 22.
    M. Aljarrah, S. Obeidat, R.H. Fouad, and M. Rababah, Thermodynamic Calculations of the Mn-Sn, Mn-Sr and Mg-Mn-{Sn, Sr} Systems, Sci. Meas. Technol. Iet, 2015, 9, p 681-692CrossRefGoogle Scholar
  23. 23.
    M. Stange, H. Fjellvåg, S. Furuseth, and B.C. Hauback, Crystal Structure and Phase Relations for Mn3Sn2 and Non-Stoichiometric Mn2−xSn, Cheminform, 1997, 28, p 140-144Google Scholar
  24. 24.
    O. Nail, Ph.D. thesis, University of Stokholm, 1945Google Scholar
  25. 25.
    C. Guillaud, J. Rech. Cent. Natl. Rech. Sci., 1947, 15Google Scholar
  26. 26.
    H. Nowotny and K. Schubert, Z. Met. kd., 1946, 37, p 17Google Scholar
  27. 27.
    A.V. Tkachuk, L.G. Akselrud, YuV Stadnyk, and O.I. Bodak, Isothermal Section of the Ti-Mn-Sn System and Crystal Structure of the TiMnSn4 Compound, J. Alloys Compd., 2000, 312, p p284-p287CrossRefGoogle Scholar
  28. 28.
    A.V. Tkachuk, YuK Gorelenko, YuV Stadnyk, and O.I. Bodak, V-Mn-{Sn, Sb} Ternary System, J. Alloys Compd, 2001, 317–318, p p280-p283CrossRefGoogle Scholar
  29. 29.
    P.I. Krypyakevich, E.I. Gladyshevsky, and O.S. Zarechnyuk, Krystallographiya, 1954, 95(3), p 525Google Scholar
  30. 30.
    Jyrki Miettinen, Thermodynamic Description of the Cu-Mn-Sn System in the Copper-Rich Corner, Calphad, 2004, 28, p p71-p77CrossRefGoogle Scholar
  31. 31.
    H. Okamoto, Mn-Sn (Manganese-Tin), J. Phase Equilib., 1999, 20, p 542CrossRefGoogle Scholar
  32. 32.
    P. Villars, Pearson’s Handbook of Crystallographic Data, ASM International, Materials Park, OH, 1997, p 1645, 1646, 1665, 1714, 2153Google Scholar
  33. 33.
    Franke, Neuschütz, Binary systems. Part 3: Binary Systems from Cs-K to Mg-Zr, Landolt-Börnstein-Group IV Physical Chemistry, 2005, 19b3Google Scholar
  34. 34.
    P. Villars, Pearson’s Handbook of Crystallographic Data, ASM International, Materials Park, OH, 1997, 1826Google Scholar
  35. 35.
    W.P. Allen and J.H. Perepezko, Solidification of Undercooled Sn-Sb Peritectic alloys: Part I. Microstructural Evolution, Metall. Trans. A, 1991, 22, p 753-764CrossRefGoogle Scholar
  36. 36.
    Powder Cell for Windows, Version 2.4, 2000.Google Scholar
  37. 37.
    E.E. Havinga, H. Damama and P. Hokkeling, Compounds and Pseudo-binary Alloys with the CuAl2 (C16)-Type structure. I. Preparation and x-ray Results, J. Less-Common Metals, 1972, 27, p 169-186Google Scholar
  38. 38.
    C.M. Du, J. Ma, Y. Lu, G.J. Chen, T.H. Yang, W.J. Zeng, and W. He, Phase Relationship of Dy-Fe-Mn System at 773 K, J. Rare Earths, 2014, 32(7), p 655-662CrossRefGoogle Scholar
  39. 39.
    J.Q. Liu, K.P. Su, X.Q. Li, X.N. Wang, X.M. Yang, M.Q. Tang, and C.H. Li, Phase Relationships in the Er-Fe-Mn Ternary System at 773K, J. Alloys Compd, 2009, 474(1), p 113-117CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Ya Liu
    • 1
    • 2
  • Bin Zhou
    • 1
  • Changjun Wu
    • 1
  • Haoping Peng
    • 1
  • Jianhua Wang
    • 1
    • 3
  • Xuping Su
    • 1
    • 2
  1. 1.Key Laboratory of Materials Surface Science and Technology of Jiangsu ProvinceChangzhou UniversityChangzhouChina
  2. 2.Jiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou UniversityChangzhouChina
  3. 3.National Experimental Teaching Demonstration Center of Materials Science and EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations