Skip to main content
Log in

Thermodynamic Properties of Tantalum

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The thermodynamic properties of tantalum have been evaluated to 5800 K. Selected values include an enthalpy of sublimation of 781 ± 4 kJ/mol at 298.15 K and a boiling point at one atmosphere pressure of 5762 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J.W. Arblaster, Thermodynamic Properties of Silver, J. Phase Equilib. Diffus., 2015, 36(6), p 573-591

    Article  Google Scholar 

  2. J.W. Arblaster, Thermodynamic Properties of Gold, J. Phase Equilib. Diffus., 2016, 37(2), p 229-245

    Article  Google Scholar 

  3. J.W. Arblaster, Thermodynamic Properties of Beryllium, J. Phase Equilib. Diffus., 2016, 37(5), p 581-591

    Article  Google Scholar 

  4. J.W. Arblaster, Thermodynamic Properties of Copper, J. Phase Equilib. Diffus., 2015, 36(5), p 422-444

    Article  Google Scholar 

  5. J.W. Arblaster, Thermodynamic Properties of Hafnium, J. Phase Equilib. Diffus., 2014, 35(4), p 490-501

    Article  Google Scholar 

  6. J.W. Arblaster, Thermodynamic Properties of Niobium, J. Phase Equilib. Diffus., 2017, 38(5), p 707-722

    Article  Google Scholar 

  7. J.W. Arblaster, Thermodynamic Properties of Vanadium, J. Phase Equilib. Diffus., 2017, 38(1), p 51-64

    Article  Google Scholar 

  8. A. Inaba, Superconductive Transition Point of Tantalum and Niobium as a Reference Temperature, Jpn. J. Appl. Phys., 1980, 19, p 1553-1559

    Article  ADS  Google Scholar 

  9. E.Rudy and D.P.Harmon, Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems, Air Force Materials Laboratory, Research and Technology Division, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, Rept. AFML-TR-65-2, Part I, Volume V (1965)

  10. J.P. Pemsler, Thermodynamics of the Interaction of Niobium and Tantalum with Oxygen and Nitrogen at Temperatures Near the Melting Point, J. Electrochem. Soc., 1961, 108, p 744-750

    Article  Google Scholar 

  11. J.P. Hiernaut, R. Beukers, M. Hoch, T. Matsui, and R.W. Ohse, Determination of the Melting Point and of the Spectral and Total Emissivities of Tungsten, Tantalum and Molybdenum in the Solid and Liquid States using a Six-Wavelength Pyrometer, High Temp. High Press., 1986, 18, p 627-633

    Google Scholar 

  12. J.P. Hiernaut, F. Sakuma, and C. Ronchi, Determination of the Melting Point and the Emissivity of Refractory Metals with a Six-Wavelength Pyrometer, High Temp. High Press., 1989, 21, p 139-148

    Google Scholar 

  13. A. Cezairliyan, J.L. McClure, and A.P. Miiller, Radiance Temperatures (in the Wavelength Range 520-906 nm) of Tantalum at Its Melting Point by a Pulse-Heating Technique, High Temp. High Press., 1993, 25, p 477-484

    Google Scholar 

  14. L. Malter and D.B. Langmuir, Resistance, Emissivities and Melting Point of Tantalum, Phys. Rev., 1939, 55, p 743-747

    Article  ADS  Google Scholar 

  15. Commission on Isotopic Abundances and Atomic Weights (CIAAW), Atomic Weights of the Elements 2015, ciaaw.org/atomic-weights.htm, Aug. 2015

  16. T.B. Douglas, Conversion of Existing Calorimetrically Determined Thermodynamic Properties to the Basis of the International Practical Temperature Scale of 1968, J. Res. Natl. Bur. Stand., 1969, 73A, p 451-470

    Article  Google Scholar 

  17. R.L. Rusby, The Conversion of Thermal Reference Values to the ITS-90, J. Chem. Thermodyn., 1991, 23, p 1153-1161

    Article  Google Scholar 

  18. R.L. Rusby, R.P. Hudson, and M. Durieux, Revised Values for (t90–t68) from 630°C to 1064°C, Metrologia, 1994, 31, p 149-153

    Article  ADS  Google Scholar 

  19. R.D. Weir and R.N. Goldberg, On the Conversion of Thermodynamic Properties to the Basis of the International Temperature Scale of 1990, J. Chem. Thermodyn., 1996, 28, p 261-276

    Article  Google Scholar 

  20. R.K. Bollinger, B.D. White, J.J. Neumeier, H.R.Z. Sandim, Y. Susuki, C.A.M. dos Santos, R. Avci, A. Migliori, and J.B. Betts, Observation of a Martensitic Structural Distortion in V, Nb and Ta, Phys. Rev. Lett., 2011, 107, p 0755031-0755034

    Article  Google Scholar 

  21. K.F. Sterrett and W.E. Wallace, Heat Capacities, Entropies and Enthalpies of Tantalum between 12 and 550°K, J. Am. Chem. Soc., 1958, 50, p 3176-3177

    Article  Google Scholar 

  22. R.K. Williams, R.S. Graves, T.L. Hebble, D.L. McElroy, and J.P. Moore, Phonon and Electron Components of the Thermal Conductivity of Tantalum at Intermediate Temperatures, Phys. Rev. B, 1982, 26, p 2932-2942

    Article  ADS  Google Scholar 

  23. Y.M. Smirnov and V.A. Finkel’, Crystal Structure of Tantalum, Niobium and Vanadium at 110 to 400°K, Zh. Eksp. Teor. Fiz. 49, 1077–1082 (1965) (Sov. Phys. JETP, 1966, 22, 750–753)

  24. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D.D. Wagman, Selected Values of the Thermodynamic Properties of the Elements, American Society for Metals, Metals Park, 1973

    Google Scholar 

  25. L.V. Gurvich, I.V. Veits, V.A. Medvedev, G.A. Bergman, V.S. Yungman, G.A. Khachkuruzov, V.S. Yorish, O.V. Dorofeeva, E.L. Osina, P.I. Tolmach, I.N. Przhevak’skii, I.I. Nazarenko, N.M. Aristova, E.A. Shenyavskaya, L.N. Gorokhov, A.L. Rogatskii, M.E. Efimov, V.Y. Leonidov, Y.G. Khait, A.G. Efimova, S.E. Tomberg, A.V. Gusarov, N.E. Khandamirova, G.N. Yurkov, L.R. Fokin, L.F. Kuratova, and A.D. Gol’dshtein, in Thermodynamic Properties of Individual Substances, ed. V.P. Glushko, L.V. Gurvich, G.A. Bergman, I.V. Veits, V.A. Medvedev, G.A. Khachkuruzov, and V.S. Yungman “Nauka”, Moscow, Vol. 4, (1982)

  26. M.W. Chase Jr., NIST-JANAF Thermochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph No.9, 1998

  27. K.D. Maglić, Recommended Specific Heat Capacity Functions of Group VA Elements, Int. J. Thermophys., 2003, 24, p 489-500

    Article  Google Scholar 

  28. V.Y. Bodryakov, Correlation between Temperature Dependences of Thermal Expansivity and Heat Capacity up to the Melting Point of Tantalum, Teplofiz. Vys. Temp. 54, 336–342 (2016) (High Temp. 54, 316–321, 2016)

  29. G.J. Sellers, A.C. Anderson, and H.K. Birnbaum, Anomalous Heat Capacities of Niobium and Tantalum Below 1 K, Phys. Rev. B, 1974, 10, p 2771-2776

    Article  ADS  Google Scholar 

  30. T. Satoh, A. Sawada, and M. Yamamoto, in Superconducting Specific Heat of Nb-Ta Alloys, Low Temperature Physics – LT 13, Proceedings of the XIIIth International Conference on Low Temperature Physics, University of Colorado, Boulder, Colorado, 21-25 Aug. 1972, Vol. 3: Superconductivity, ed. by K.D. Timmerhaus, W.J. O’Sullivan, and E.F. Hammel (Plenum Press, New York, London, 1974), p 372–376

  31. G.J. Sellers, A.C. Anderson, and H.K. Birnbaum, The Anomalous Heat Capacity of Superconducting Niobium, Phys. Lett. A, 1973, 44, p 173-174

    Article  ADS  Google Scholar 

  32. Y.L. Shen, Low Temperature Heat Capacities of Vanadium, Niobium and Tantalum, Ph.D. Thesis, University of California, Lawrence Radiation Laboratory, Berkeley, California. U.S. Atomic Energy Commission, Rept. UCRL-16117, 1965

  33. H.A. Leupold, G.J. Iafrate, F. Rothwarf, J.T. Breslin, D. Edmiston, and T.R. AuCoin, Low-Temperature Specific Heat Anomalies in the Group V Transition Metals, J. Low Temp. Phys., 1977, 28, p 241-261

    Article  ADS  Google Scholar 

  34. G.A.Alers, Use of Sound Velocity Measurements in Determining the Debye Temperature of Solids, Physical AcousticsPrinciples and Methods, Vol. III, Part B: Lattice Dynamics, W.P.Mason (Ed.), Academic Press, New York, 1965, p 1-42

  35. Y. Takahashi and J. Nakamura, The Heat Capacity of Tantalum from 80 to 1000 K, Thermochim. Acta, 1996, 282–283, p 317-322

    Article  Google Scholar 

  36. B.Y. Berezin and V.Y. Chekhovskoi, The Enthalpy of Tantalum between 2400°K and the Melting Temperature, Izv. Akad. Nauk SSSR Metally (3), 63–65 (1977) (Russ. Metall. Metally (3), 51–53, 1977)

  37. E. Arpaci and M.G. Frohberg, Enthalpy Measurements on Solid and Liquid Tantalum by Levitation Calorimetry, Z. Metallkde., 1982, 73, p 548-551

    Google Scholar 

  38. N.S. Rasor and J.D. McClelland, Thermal Properties of Materials. Part 1. Properties of Graphite, Molybdenum and Tantalum to Their Destruction Temperatures, Wright Air Development Center, Air Research and Development Command, United States Air Force, Wright-Patterson Air Force Base, Ohio, Rept. WADC-TR-56-400, 1957

  39. N.S. Rasor and J.D. McClelland, Thermal Properties of Graphite, Molybdenum and Tantalum to Their Destruction Temperatures, J. Phys. Chem. Solids, 1960, 15, p 17-26

    Article  ADS  Google Scholar 

  40. G.W. Lehman, Thermal Properties of Refractory Materials, Wright Air Development Division, Air Research and Development Command, United States Air Force, Wright-Patterson Air Force Base, Ohio, Rept. WADD-TR-60-581, 1960, p 1–19

  41. R.E. Taylor and R.A. Finch, The Specific Heats and Resistivities of Molybdenum, Tantalum and Rhenium from Low to Very High Temperatures, North American Aviation, U.S. Atomic Energy Commission, Rept. NAA-SR-6034, 1961

  42. R.E. Taylor and R.A. Finch, The Specific Heat and Resistivities of Molybdenum, Tantalum and Rhenium, J. Less Common Metals, 1964, 6, p 283-294

    Article  Google Scholar 

  43. A. Cezairliyan, J.L. McClure, and C.W. Beckett, High-Speed (Subsecond) Measurement of Heat Capacity, Electrical Resistivity and Thermal Radiation Properties of Tantalum in the Range 1900 to 3200 K, J. Res. Nat. Bur. Stand., 1971, 75A, p 1-13

    Article  Google Scholar 

  44. V.A. Petukhov, V.Y. Chekhovskoi, and A.G. Mozgovoi, Experimental Study of the Thermal Expansion of Various Construction Materials, Tantalum and Tantalum–Tungsten TV-10 Alloy, Teplofiz. Vys. Temp. 15, 534–538 (1977) (High Temp. 15, 449–452, 1977)

  45. A.P. Miiller and A. Cezairliyan, Transient Interferometric Technique for Measuring Thermal Expansion at High Temperatures: thermal Expansion of Tantalum in the Range 1500-3200 K, Int. J. Thermophys., 1982, 3, p 259-288

    Article  ADS  Google Scholar 

  46. A.P. Miiller and A. Cezairliyan, Interferometric Technique for the Subsecond Measurement of Thermal Expansion at High Temperatures: application to Refractory Metals, Int. J. Thermophys., 1991, 12, p 643-656

    Article  ADS  Google Scholar 

  47. F.L. Oetting and J.D. Navratil, Enthalpy of Molybdenum and Tantalum from 298-1400 K, J. Chem. Eng. Data, 1972, 17, p 230-231

    Article  Google Scholar 

  48. J.B. Conway and R.A. Hein, Unpublished work quoted by Hoch [49]

  49. M. Hoch, The High Temperature Specific Heat of Body-Centred Cubic Refractory Metals, High Temp. High Press., 1969, 1, p 531-542

    Google Scholar 

  50. K.K. Kelley, The Specific Heat of Tantalum at Low Temperatures and the Effect of Small Amounts of Dissolved Hydrogen, J. Chem. Phys., 1940, 8, p 316-322

    Article  ADS  Google Scholar 

  51. K.Clusius and C.G.Losa, Ergebnisse der Tieftemperaturforschung XVI. Die Atom- und Elektronenwärme des Tantals zwischen 10° und 273°K, Z. Naturforschg. 10a, 939–943 (1955)

  52. J.L. McClure and A. Cezairliyan, Measurement of the Heat of Fusion of Tantalum by a Microsecond-Resolution Transient Technique, Int. J. Thermophys., 1994, 15, p 505-511

    Article  ADS  Google Scholar 

  53. G. Pottlacher and A. Seifter, Microsecond Laser Polarimetry for Emissivity Measurements on Liquid Metals at High Temperatures–Application to Tantalum, Int. J. Thermophys., 2002, 23, p 1281-1290

    Article  Google Scholar 

  54. G. Pottlacher, High Temperature Thermophysical Properties of 22 Pure Metals, Edition Keiper, Graz, 2010

    Google Scholar 

  55. S.V. Lebedev and G.I. Mozharov, Heat Capacity of Tantalum with Rapid Pulsed Heating by a High-Density Electric Current, Tepolofiz. Vys. Temp. 15, 53–57 (1977) (High Temp. 15, 45–48, 1977)

  56. H.G. Kolsky, R.M. Gilmer, and P.W. Gilles, The Thermodynamic Properties of 54 Elements Considered as Ideal Monatomic Gases. U.S. Atomic Energy Commission Rept. LA 2110 (1957)

  57. P.J. Mohr, D.B. Newell, and B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, Rev. Mod. Phys., 2016, 88, p 035009-1-035009-73

    Article  ADS  Google Scholar 

  58. P.J. Mohr, D.B. Newell, and B.N. Taylor, CODATA Recommended Values of the Fundamental Physical Constants: 2014, J. Phys. Chem. Ref. Data, 2016, 45, p 043102-1-043102-74

    Article  ADS  Google Scholar 

  59. C.E.Moore, Atomic Energy Levels, Nat. Bur. Stand. Nat. Stand. Ref. Data Ser., NSRDS-NBS 35, Vol. III, U.S. Govt. Printing Office, Washington, D.C. (1971)

  60. H. Mocnik, B. Arcimowicz, W. Salmhofer, L. Windholz, and G.H. Guthöhrlein, Investigation of the Hyperfine Structure of Ta I-lines (III), Z. Phys. D, 1996, 36, p 129-136

    Article  ADS  Google Scholar 

  61. N. Jariz, L. Windolz, D. Messnarz, H. Jäger, R. Engleman, Jr., J.C. Pickering, and H. Jäger, Investigation of the Hyperfine Structure of TaI-Lines (IX), Phys. Scr., 2005, 71, p 611-620

    Article  ADS  Google Scholar 

  62. D.B. Langmuir and L. Malter, The Rate of Evaporation of Tantalum, Phys. Rev., 1939, 55, p 748-749

    Article  ADS  Google Scholar 

  63. M.D. Fiske, The Temperature Scale, Thermionics, and Thermatomics of Tantalum, Phys. Rev., 1942, 61, p 513-519

    Article  ADS  Google Scholar 

  64. R. Szwarc, E.R. Plante, and J.J. Diamond, Vapor Pressure and Heat of Sublimation of Tungsten, J. Res. Nat. Bur. Stand., 1965, 69A, p 417-421

    Article  Google Scholar 

  65. J.W. Edwards, H.L. Johnston, and P.E. Blackburn, Vapor Pressure of Inorganic Substances. IV. Tantalum Between 2624 and 2943°K, J. Am. Chem. Soc., 1951, 73, p 172-174

    Article  Google Scholar 

  66. N.A. Gorbatyi and G.N. Shuppe, On the Effect of Strong Electric Fields (106 v/cm) on the Evaporation and Resistivity of Metals (Mo,Ta,W), Zh. Tekh. Fiz. 28, 623–635 (1958) (Sov. Phys. Tech. Phys. 3, 587–596, 1958)

  67. I.V.Golubtsov and A.N. Nesmeyanov, Investigation of the Evaporation of Tungsten, Molybdenum and Tantalum in a Vacuum, Vestn. Mosk. Univ. Ser. II Khim. (5), 31–33 (1965)

  68. V.Y. Bodryakov, Heat Capacity of Solid Tantalum: Self-Consistent Calculation, Teplofiz. Vys. Temp. 51, 233–242 (2013) (High Temp. 51, 206–214, 2013)

  69. W.H. Keesom and M. Desirant, The Specific Heats of Tantalum in the Normal and in the Superconductive State, Physica, 1941, 8, p 273-288

    Article  ADS  Google Scholar 

  70. R.D. Worley, M.W. Zemansky, and H.A. Boorse, Heat Capacities of Vanadium and Tantalum in the Normal and Superconducting Phases, Phys. Rev., 1955, 99, p 447-458

    Article  ADS  Google Scholar 

  71. N.M. Wolcott, The Specific Heat of Transition Metals, Conference de Physique des Basses Témperatures, Paris, 2 to 8 Sep. 1955, Centre National de la Recherche Scientifique and UNESCO, Paris, 1956, p 286–289

  72. C. Chou, D. White, and H.L. Johnston, Heat Capacity in the Normal and Superconducting States and Critical Field of Niobium, Phys. Rev., 1958, 109, p 788-796

    Article  ADS  Google Scholar 

  73. D. White, C. Chou, and H.L. Johnston, Heat Capacity in the Normal and Conducting States and Critical Field of Tantalum, Phys. Rev., 1958, 109, p 797-802

    Article  ADS  Google Scholar 

  74. F.J. Morin and J.P. Maita, Specific Heats of Transition Metal Superconductors, Phys. Rev., 1963, 129, p 1115-1120

    Article  ADS  Google Scholar 

  75. J.M. Corsan and A.J. Cook, Electronic Specific Heat and Superconducting Properties of Nb-Ta Alloys, Phys. Lett. A, 1968, 28, p 500-501

    Article  ADS  Google Scholar 

  76. S.V. Lebedev, A.I. Savvatimski and Yu.B.Smirnov, Measurement of Latent Heats of Fusion for Refractory Metals, Teplofiz. Vys. Temp. 9, 635–638 (1971) (High Temp. 9, 578–581, 1971)

  77. M.M. Martynyuk and V.I. Tsapkov, Relationship between the Electrical Resistivity of Niobium, Tantalum, Molybdenum and Tungsten and Their Enthalpy, Izv. Akad. Nauk SSSR Metally (6), 63–67 (1974) (Russ. Metall. Metally (6), 52–55, 1974)

  78. S.V. Lebedev and G.I. Mozharov, Determination of the Temperature Dependence of Resistivity of Tantalum in Both the Solid and Liquid States during Rapid Heating with an Electric Current, Teplofiz. Vys. Temp., 1976, 14, p 1266-1269

    Google Scholar 

  79. J.W. Shaner, G.R. Gathers, and C. Minichino, Thermophysical Properties of Liquid Tantalum and Molybdenum, High Temp. High Press., 1977, 9, p 331-343

    Google Scholar 

  80. G.R. Gathers, Correction of Specific Heat in Isobaric Expansion Data, Int. J. Thermophys., 1983, 4, p 149-157

    Article  ADS  Google Scholar 

  81. R. Gallob, H. Jäger, and G. Pottlacher, Recent Results on Thermophysical Data of Liquid Niobium and Tantalum, High Temp. High Press., 1985, 17, p 207-213

    Google Scholar 

  82. A. Berthault, L. Arles, and J. Matricon, High-Pressure High-Temperature Thermophysical Measurements on Tantalum and Tungsten, Int. J. Thermophys., 1986, 7, p 167-179

    Article  ADS  Google Scholar 

  83. H. Jäger, W. Neff, and G. Pottlacher, Improved Thermophysical Measurements on Solid and Liquid Tantalum, Int. J. Thermophys., 1992, 13, p 83-93

    Article  ADS  Google Scholar 

  84. R.S. Hixson, Personal Communication 1990 to Jäger et al. [83]

  85. G.H. Guthöhrlein, H. Mocnik, and L. Windholz, A New Energy Level of the Neutral Tantalum Atom, Z. Phys. D, 1995, 35, p 177-178

    Article  ADS  Google Scholar 

  86. D. Messnarz and G.H. Guthöhrlein, Investigation of the Hyperfine Structure of TaI-Lines (IV), Eur. Phys. J. D, 2000, 12, p 269-282

    Article  ADS  Google Scholar 

  87. B. Arcimowicz, A. Huss, S. Roth, N. Jaritz, D. Messnarz, G.H. Guthöhrlein, H. Jäger, and L. Windholz, Investigation of the Hyperfine Structure of TaI-Lines (V), Eur. Phys. J. D, 2001, 13, p 187-194

    Article  ADS  Google Scholar 

  88. N. Jaritz, H. Jäger, and L. Windholz, Investigation of the Hyperfine Structure of TaI-Lines (VI), Eur. Phys. J. D, 2002, 18, p 267-276

    ADS  Google Scholar 

  89. D. Messnarz, N. Jaritz, B. Arcimowicz, V.O. Zilio, R. Engleman, Jr., J.C. Pickering, H. Jäger, G.H. Guthöhrlein, and L. Windholz, Investigation of the Hyperfine Structure of TaI-Lines (VII), Phys. Scr., 2003, 68, p 170-191

    Article  ADS  Google Scholar 

  90. N. Jaritz, G.H. Guthöhrlein, L. Windholz, D. Messnarz, R. Engleman, Jr., J.C. Pickering, and H. Jäger, Investigation of the Hyperfine Structure of TaI-Lines (VIII), Phys. Scr., 2004, 69, p 441-450

    Article  ADS  Google Scholar 

  91. N. Jaritz, L. Windholz, U. Zaheer, M. Farooq, B. Arcimowicz, R. Engleman, Jr., J.C. Pickering, H. Jäger, and G.H. Guthöhrlein, Investigation of the Hyperfine Structure of TaI-Lines (X), Phys. Scr., 2006, 74, p 211-217

    Article  ADS  Google Scholar 

  92. P. Glowacki, Z. Uddin, G.H. Guthöhrlein, L. Windholz, and J. Dembczyński, A Study of the Hyperfine Structure of Ta I, Lines Based on Fourier Transform Spectra and Laser-Induced Fluorescence, Phys. Scr., 2009, 80, p 025301-1-025301-10

    Article  ADS  Google Scholar 

  93. T.P.J.H. Babeliowsky, Mass Spectrometric Determination of the Heat of Vaporization of Some Solid Elements, Physica, 1962, 28, p 1160-1169

    Article  ADS  Google Scholar 

  94. É.Y. Zandberg, N.I. Ionov, and A.Y. Totegode, Mass-Spectrometric Determination of the Heat of Vaporization of Atoms and Positive Ions in Sublimation of Polycrystalline Rhenium, Tungsten, Tantalum and Molybdenum, Zh. Tekh. Fiz. 35, 1504–1515 (1965) (Sov. Phys. Tech. Phys. 10, 1164–1172, 1966)

  95. N. Sasaki, K. Kubo, and M. Asano, Mass Spectrometric Studies of the Work Function and the Heats of Sublimation of Atom and Positive Ion, Mass Spectrom. (Jpn), 1970, 18, p 1189-1194

    Article  Google Scholar 

  96. E. Gebhardt, H.-D. Seghezzi, and H. Keil, Über die Verdampfungsgeschwindigkeit von Tantalum im Vakuum, Z. Metallkde., 1962, 53, p 524-525

    Google Scholar 

  97. F. Simon and M. Ruhemann, Untersuchungen über die Spezifischen Wärmen bei Tiefen Temperaturen, Z. Phys. Chem., 1927, 129, p 321-348

    Google Scholar 

  98. A. Magnus and H. Holtzmann, Untersuchungen über die Spezifischen Wärme von Tantal, Wolfram und Beryllium zwischen 100 and 900°C, Ann. Physik., 1929, 395, p 585-613

    Article  ADS  Google Scholar 

  99. F.M. Jaeger and W.A. Veestra, The Exact Measurement of the Specific Heats of Solid Substances at High Temperature. VI. The Specific Heats of Vanadium, Niobium, Tantalum and Molybdenum, Rec. Trav. Chim., 1934, 53, p 677-687

    Article  Google Scholar 

  100. I.B. Fieldhouse, J.C. Hedge, J.I. Lang, A.N. Takata, and T.E. Watermann, Measurements of Thermal Properties, Armour Research Foundation, Wright Air Development Center, Air Research and Development Command, United States Air Force, Wright-Patterson Air Force Base, Ohio, Rept. WADC-TR-55-495, Part 1 (1956)

  101. M. Hoch, H.L. Johnston, and A. High, Temperature Drop Calorimeter. The Heat Capacities of Tantalum and Tungsten between 1000° and 3000°K, J. Phys. Chem., 1961, 65, p 855-860

    Article  Google Scholar 

  102. M. Pirani, Über die Messung der Spezifischen Wärme fester Körper bei Hohen Temperaturen, Ber. Deut. Physik. Ges., 1912, 10, p 1037-1054

    Google Scholar 

  103. D.B. Langmuir and L. Malter, Specific Heat, Heat of Sublimation and Vapor-Pressure Constant of Tantalum, Phys. Rev., 1939, 55, p 1138

    Article  Google Scholar 

  104. J.H. Boggs, R.A. Knezek, and J.A. Wiebelt, Status Report on a Study of the Use of Furnace Calorimetry for the Rapid Determination of Specific Heats of Solids at High Temperature, U.S. Atomic Energy Commission, Rept. AECU-4282 (1959)

  105. J.H. Boggs and J.A. Wiebelt, An Investigation of a Particular Comparative Method of Specific Heat Determinations in the Temperature Range of 1500 to 2600°F, U.S. Atomic Energy Commission, Rept. TID-5734 (1960)

  106. D.H. Hildenbrand, L.P. Theard, and N.D. Potter, An Experimental Program for Obtaining the Thermodynamic Properties of Propellant Combustion Products. Third Quarterly Technical Summary Report, Aeronutronic Research Laboratories Technical Report, Publ. No. U-1606 (1962)

  107. G.C. Lowenthal, The Specific Heat of Metals Between 1200°K and 2400°K, Aust. J. Phys., 1963, 16, p 47-67

    Article  ADS  Google Scholar 

  108. Y.A. Kraftmakher, Specific Heat of Tantalum over the Temperature Range 1200-2900°K, Zh. Prikl. Mekhan. i Tekhn. Fiz. (2), 158–160 (1963)

  109. Y.A. Kraftmakher, The Modulation Method for Measuring Specific Heat, High Temp. High Press., 1973, 5, p 433-454

    Google Scholar 

  110. C. Affortit, Mesure de la Chaleur Spécifique des Métaux Jusqu’à Leur Température de Fusion, Centre d’Etudes Nucleares de Fontenay-aux-Roses, Commissariat à l’Énergie Atomique, Rapp. CEA-R3287 (1967)

  111. L.P. Filippov and R.P. Yurchak, High Temperature Investigation of the Thermal Properties of Solids, Inzh. Fiz. Zh. 21, 561–577 (1971) (J. Eng. Phys 21, 1209–1220, 1971)

  112. L.P. Filippow, Untersuchung der Thermischen Eigenschaften im Stoff an der Moskauer Universität, Int. J. Heat Mass Transfer, 1973, 16, p 865-885

    Article  Google Scholar 

  113. A.A. Kulish and L.P. Filippov, Determination of the Thermophysical Properties of Group V Metals at High Temperatures by Means of a Study of Deformation Vibrations of Plates, Teplofiz. Vys. Temp. 16, 602–610 (1978) (High Temp. 16, 512–519, 1978)

  114. K.E. Gilchrist and S.D. Preston, Thermophysical Property Measurements on Some Neutron Absorbing Materials, High. Temp. High Press., 1979, 11, p 643-651

    Google Scholar 

  115. N.D. Milošević, G.S. Vuković, D.Z. Pavičić, and K.D. Maglić, Thermal Properties of Tantalum Between 300 and 2300 K, Int. J. Thermophys., 1999, 20, p 1129-1136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arblaster, J.W. Thermodynamic Properties of Tantalum. J. Phase Equilib. Diffus. 39, 255–272 (2018). https://doi.org/10.1007/s11669-018-0627-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0627-2

Keywords

Navigation