Journal of Phase Equilibria and Diffusion

, Volume 39, Issue 2, pp 226–236 | Cite as

Experimental Investigation of Phase Equilibria in Ti–Zr–Ge System

  • J. S. Liu
  • X. M. Huang
  • J. L. Liu
  • H. S. Liu
  • G. M. Cai
  • Z. P. Jin


Phase equilibria in the Ti–Zr–Ge ternary system at 1073 and 1173 K were investigated experimentally using equilibrated alloys with electron probe microanalysis and x-ray diffraction analysis. No ternary compounds were detected. Eleven and nine three-phase regions were determined in the Ti–Zr–Ge isothermal section at 1073 and 1173 K, respectively. Intermediate compounds ZrGe2, Zr5Ge4, Zr5Ge3, Ti5Ge4, and Ti5Ge3, possessing large solubility, extended along the Ge isoconcentration line, indicating remarkable substitution of Ti for Zr in the Zr–Ge compounds or of Zr for Ti in the Ti–Ge compounds. The solubility of Ti in ZrGe2 increased from 16.0 at.% at 1073 K to 19.3 at.% at 1173 K, while that of Zr in Ti5Ge3 remained nearly 41.0 at.% at both 1073 and 1173 K.


isothermal section microstructure phase diagram ternary system Ti–Zr–Ge alloy 



This work was financially supported by the Major State Basic Research Development Program of China (Grant No. 2014CB6644002) and the Project of Innovation-Driven Plan in Central South University (no. 2015CX004).


  1. 1.
    A. Shapiro and A. Rabinkin, State of the Art of Titanium-Based Brazing Filler Metals, Weld. J., 2003, 82, p 36-43Google Scholar
  2. 2.
    M. Singh, R. Asthana, and T.P. Shpargel, Brazing of Ceramic-Matrix Composites to Ti and Hastealloy Using Ni-Base Metallic Glass Interlayers, Mater. Sci. Eng. A, 2008, 498, p 19-30CrossRefGoogle Scholar
  3. 3.
    Y.H. Liu, J.D. Hu, P. Shen, X.H. Han, and J.C. Li, Microstructural and Mechanical Properties of Jointed ZrO2/Ti-6Al-4V Alloy Using Ti33Zr17Cu50, Amorphous Brazing Filler, Mater. Des., 2013, 47, p 281-286CrossRefGoogle Scholar
  4. 4.
    J.G. Lee and M.K. Lee, Microstructural and Mechanical Characteristics of Zirconium Alloy Joints Brazed by a Zr-Cu-Al-Based Glassy Alloy, Mater. Des., 2015, 65, p 265-271CrossRefGoogle Scholar
  5. 5.
    X.Q. Li, L. Li, K. Hu, and S.G. Qu, Vacuum Brazing of TiAl-Based Intermetallics with Ti-Zr-Cu-Ni-Co Amorphous Alloy as Filler Metal, Intermetallics, 2015, 57, p 7-16CrossRefGoogle Scholar
  6. 6.
    A. Rabinkin, H. Liebermann, S. Pounds, T. Taylor, F. Reidinger, and S.C. Lui, Amorphous TiZr-Basemetglass Brazing Filler Metals, Scr. Metall. Mater., 1991, 25, p 399-404CrossRefGoogle Scholar
  7. 7.
    A. Elrefaey and W. Tillmann, Effect of Brazing Parameters on Microstructure and Mechanical Properties of Titanium Joints, J. Mater. Process. Technol., 2009, 209, p 4842-4849CrossRefGoogle Scholar
  8. 8.
    W.R. Frick, Brazing Handbook, American Welding Society, Miami, 1991Google Scholar
  9. 9.
    Y.J. Jing, X.S. Yue, X.Q. Gao, D.Y. Su, and J.B. Hou, The Influence of Zr Content on the Performance of TiZrCuNi Brazing Filler, Mater. Sci. Eng. A, 2016, 678, p 190-196CrossRefGoogle Scholar
  10. 10.
    G.H. Han, Y.F. Wang, H.Y. Zhao, X.G. Song, J. Cao, and J.C. Feng, Vacuum Brazing of TZM Alloy to ZrC Particle Reinforced W Composite Using Ti-28Ni Eutectic Brazing Alloy, Int. J. Refract. Metals Hard Mater., 2017, 69, p 240-246CrossRefGoogle Scholar
  11. 11.
    C.T. Chang, Y.C. Du, R.F. Shiue, and C.S. Chang, Infrared Brazing of High-Strength Titanium Alloys by Ti-15Cu-15Ni and Ti-15Cu-25Ni Filler Foils, Mater. Sci. Eng. A, 2006, 420, p 155-164CrossRefGoogle Scholar
  12. 12.
    Y. Wang, Z.Z. Duan, G. Chen, Q.Y. Jiang, W. Dong, and K. Lei, Effects of Brazing Temperature on Microstructure and Properties of Interface Between cBN and Co-Based Active Filler Metals, Vacuum, 2017, 145, p 30-38ADSCrossRefGoogle Scholar
  13. 13.
    E. Ganjeh, H. Sarkhosh, M.E. Bajgholi, H. Khorsand, and M. Ghaffari, Increasing Ti-6Al-4V Brazed Joint Strength Equal to the Base Metal by Ti and Zr Amorphous Filler Alloys, Mater. Charact., 2012, 71, p 31-40CrossRefGoogle Scholar
  14. 14.
    A.A. Shirzadi and E.R. Wallach, Analytical Modeling of Transient Liquid Phase (TLP) Diffusion Bonding When a Temperature Gradient Is Imposed, Acta Mater., 1999, 47, p 3551-3560CrossRefGoogle Scholar
  15. 15.
    A.A. Shirzadi and E.R. Wallach, Temperature Gradient Transient Liquid Phase Diffusion Bonding: A New Method for Joining Advanced Materials, Sci. Technol. Weld. Join., 1997, 2, p 89-94CrossRefGoogle Scholar
  16. 16.
    R. Rettig and S. Steuer, Diffusion of Germanium in Binary and Multicomponent Nickel Alloys, J. Phase Equilib. Differ., 2011, 32, p 198-205CrossRefGoogle Scholar
  17. 17.
    N. Weyrich and C. Leinenbach, Low Temperature TLP Bonding of Al2O3-Ceramics Using Eutectic Au-(Ge,Si) Alloys, J. Mater. Sci., 2013, 48, p 7115-7124ADSCrossRefGoogle Scholar
  18. 18.
    C. Leinenbach, F. Valenza, D. Giuranno, H.R. Elsener, S. Jin, and R. Novakovic, Wetting and Soldering Behavior of Eutectic Au-Ge Alloy on Cu and Ni Substrates, J. Electron. Mater., 2011, 40, p 1533-1541ADSCrossRefGoogle Scholar
  19. 19.
    J.L. Murray, The Ti-Zr (Titanium-Zirconium) System, Bull. Alloy Phase Diagr., 1981, 2, p 197-201CrossRefGoogle Scholar
  20. 20.
    K.C.H. Kumar, P. Wollants, and L. Delacy, Thermodynamic Assessment of the Ti-Zr System and Calculation of the Nb-Ti-Zr Phase Diagram, J. Alloys Compd., 1994, 206, p 121-127CrossRefGoogle Scholar
  21. 21.
    J.P. Abriata, J.C. Bolcich, and D. Arias, The Ge-Zr (Germanium-Zirconium) System, Bull. Alloy Phase Diagr., 1986, 7, p 43–47, p 99–100Google Scholar
  22. 22.
    M.V. Rudomekina, Y.D. Seropegin, and E.E. Shvyryaeva, Investigation of the Zr-V-Ge System Alloys, J. Less Common Metals, 1988, 138, p 263-269CrossRefGoogle Scholar
  23. 23.
    T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprczak, Binary Alloy Phase Diagrams, ASM, Materials Park, 1990Google Scholar
  24. 24.
    M.V. Rudomekina, Y.D. Seropegin, A.V. Gribanov, and L.S. Gusei, Phase Equilibria in the Ti-Nb-Ge System at 1170 K, J. Less Common Metals, 1989, 147, p 239-247CrossRefGoogle Scholar
  25. 25.
    D.D. Liu, H.L. Yan, X.M. Yuan, Y.S. Chung, Y. Du, H.H. Xu, L.B. Liu, and P. Nash, Thermodynamic Modeling of the Ge-Ti System Supported by Key Experiment, Thermochim. Acta, 2011, 521, p 148-154CrossRefGoogle Scholar
  26. 26.
    T.A. Jain and C.R. Kao, Binary Compounds in the Ge-Ti System, J. Alloys Compd., 1999, 282, p 9-12CrossRefGoogle Scholar
  27. 27.
    R.W. Bittner, C. Colinet, J.C. Tedenac, and K.W. Richter, Revision of the Ge-Ti Phase Diagram and Structural Stability of the New Phase Ge4Ti5, J. Alloys Compd., 2013, 577, p 211-216CrossRefGoogle Scholar
  28. 28.
    J.J. Nickl, K.K. Schweitzer, and P. Luxenberg, Chemical Vapor Deposition of the Systems Titanium-Silicon-Carbon and Titanium-Germanium-Carbon, Proc. Int. Conf. Chem. Vap. Depos., 1972, 3, p 4-23Google Scholar
  29. 29.
    O.K. Belousov and I.I. Kornilov, The Solubility of Germanium System in the α-Titanium, lzv. Akad. Nauk SSSR Met., 1976, 1, p 168-169Google Scholar
  30. 30.
    W. Rossteutscher and K. Schubert, Strukturuntersuchungen in einigen T 4-5-B 4-5 systemen (Structural Studies of Pt-Ge system), Z. Metall. Trans., 1965, 56, p 813-822, in GermanGoogle Scholar
  31. 31.
    Z.Y. Xie, K.L. Lv, Y.H. Luo, H.S. Liu, and Z.P. Jin, Experimental Investigation of Phase Equilibria in Ge-Ni-Ti System, J. Alloys Compd., 2015, 645, p 344-351CrossRefGoogle Scholar
  32. 32.
    P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, 1991Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • J. S. Liu
    • 1
  • X. M. Huang
    • 1
  • J. L. Liu
    • 1
  • H. S. Liu
    • 1
  • G. M. Cai
    • 1
  • Z. P. Jin
    • 1
  1. 1.School of Materials Science and EngineeringCentral South UniversityChangsha CityPeople’s Republic of China

Personalised recommendations