Skip to main content
Log in

Experimental Investigation of Phase Equilibria in Ti–Zr–Ge System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Phase equilibria in the Ti–Zr–Ge ternary system at 1073 and 1173 K were investigated experimentally using equilibrated alloys with electron probe microanalysis and x-ray diffraction analysis. No ternary compounds were detected. Eleven and nine three-phase regions were determined in the Ti–Zr–Ge isothermal section at 1073 and 1173 K, respectively. Intermediate compounds ZrGe2, Zr5Ge4, Zr5Ge3, Ti5Ge4, and Ti5Ge3, possessing large solubility, extended along the Ge isoconcentration line, indicating remarkable substitution of Ti for Zr in the Zr–Ge compounds or of Zr for Ti in the Ti–Ge compounds. The solubility of Ti in ZrGe2 increased from 16.0 at.% at 1073 K to 19.3 at.% at 1173 K, while that of Zr in Ti5Ge3 remained nearly 41.0 at.% at both 1073 and 1173 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Shapiro and A. Rabinkin, State of the Art of Titanium-Based Brazing Filler Metals, Weld. J., 2003, 82, p 36-43

    Google Scholar 

  2. M. Singh, R. Asthana, and T.P. Shpargel, Brazing of Ceramic-Matrix Composites to Ti and Hastealloy Using Ni-Base Metallic Glass Interlayers, Mater. Sci. Eng. A, 2008, 498, p 19-30

    Article  Google Scholar 

  3. Y.H. Liu, J.D. Hu, P. Shen, X.H. Han, and J.C. Li, Microstructural and Mechanical Properties of Jointed ZrO2/Ti-6Al-4V Alloy Using Ti33Zr17Cu50, Amorphous Brazing Filler, Mater. Des., 2013, 47, p 281-286

    Article  Google Scholar 

  4. J.G. Lee and M.K. Lee, Microstructural and Mechanical Characteristics of Zirconium Alloy Joints Brazed by a Zr-Cu-Al-Based Glassy Alloy, Mater. Des., 2015, 65, p 265-271

    Article  Google Scholar 

  5. X.Q. Li, L. Li, K. Hu, and S.G. Qu, Vacuum Brazing of TiAl-Based Intermetallics with Ti-Zr-Cu-Ni-Co Amorphous Alloy as Filler Metal, Intermetallics, 2015, 57, p 7-16

    Article  Google Scholar 

  6. A. Rabinkin, H. Liebermann, S. Pounds, T. Taylor, F. Reidinger, and S.C. Lui, Amorphous TiZr-Basemetglass Brazing Filler Metals, Scr. Metall. Mater., 1991, 25, p 399-404

    Article  Google Scholar 

  7. A. Elrefaey and W. Tillmann, Effect of Brazing Parameters on Microstructure and Mechanical Properties of Titanium Joints, J. Mater. Process. Technol., 2009, 209, p 4842-4849

    Article  Google Scholar 

  8. W.R. Frick, Brazing Handbook, American Welding Society, Miami, 1991

    Google Scholar 

  9. Y.J. Jing, X.S. Yue, X.Q. Gao, D.Y. Su, and J.B. Hou, The Influence of Zr Content on the Performance of TiZrCuNi Brazing Filler, Mater. Sci. Eng. A, 2016, 678, p 190-196

    Article  Google Scholar 

  10. G.H. Han, Y.F. Wang, H.Y. Zhao, X.G. Song, J. Cao, and J.C. Feng, Vacuum Brazing of TZM Alloy to ZrC Particle Reinforced W Composite Using Ti-28Ni Eutectic Brazing Alloy, Int. J. Refract. Metals Hard Mater., 2017, 69, p 240-246

    Article  Google Scholar 

  11. C.T. Chang, Y.C. Du, R.F. Shiue, and C.S. Chang, Infrared Brazing of High-Strength Titanium Alloys by Ti-15Cu-15Ni and Ti-15Cu-25Ni Filler Foils, Mater. Sci. Eng. A, 2006, 420, p 155-164

    Article  Google Scholar 

  12. Y. Wang, Z.Z. Duan, G. Chen, Q.Y. Jiang, W. Dong, and K. Lei, Effects of Brazing Temperature on Microstructure and Properties of Interface Between cBN and Co-Based Active Filler Metals, Vacuum, 2017, 145, p 30-38

    Article  ADS  Google Scholar 

  13. E. Ganjeh, H. Sarkhosh, M.E. Bajgholi, H. Khorsand, and M. Ghaffari, Increasing Ti-6Al-4V Brazed Joint Strength Equal to the Base Metal by Ti and Zr Amorphous Filler Alloys, Mater. Charact., 2012, 71, p 31-40

    Article  Google Scholar 

  14. A.A. Shirzadi and E.R. Wallach, Analytical Modeling of Transient Liquid Phase (TLP) Diffusion Bonding When a Temperature Gradient Is Imposed, Acta Mater., 1999, 47, p 3551-3560

    Article  Google Scholar 

  15. A.A. Shirzadi and E.R. Wallach, Temperature Gradient Transient Liquid Phase Diffusion Bonding: A New Method for Joining Advanced Materials, Sci. Technol. Weld. Join., 1997, 2, p 89-94

    Article  Google Scholar 

  16. R. Rettig and S. Steuer, Diffusion of Germanium in Binary and Multicomponent Nickel Alloys, J. Phase Equilib. Differ., 2011, 32, p 198-205

    Article  Google Scholar 

  17. N. Weyrich and C. Leinenbach, Low Temperature TLP Bonding of Al2O3-Ceramics Using Eutectic Au-(Ge,Si) Alloys, J. Mater. Sci., 2013, 48, p 7115-7124

    Article  ADS  Google Scholar 

  18. C. Leinenbach, F. Valenza, D. Giuranno, H.R. Elsener, S. Jin, and R. Novakovic, Wetting and Soldering Behavior of Eutectic Au-Ge Alloy on Cu and Ni Substrates, J. Electron. Mater., 2011, 40, p 1533-1541

    Article  ADS  Google Scholar 

  19. J.L. Murray, The Ti-Zr (Titanium-Zirconium) System, Bull. Alloy Phase Diagr., 1981, 2, p 197-201

    Article  Google Scholar 

  20. K.C.H. Kumar, P. Wollants, and L. Delacy, Thermodynamic Assessment of the Ti-Zr System and Calculation of the Nb-Ti-Zr Phase Diagram, J. Alloys Compd., 1994, 206, p 121-127

    Article  Google Scholar 

  21. J.P. Abriata, J.C. Bolcich, and D. Arias, The Ge-Zr (Germanium-Zirconium) System, Bull. Alloy Phase Diagr., 1986, 7, p 43–47, p 99–100

  22. M.V. Rudomekina, Y.D. Seropegin, and E.E. Shvyryaeva, Investigation of the Zr-V-Ge System Alloys, J. Less Common Metals, 1988, 138, p 263-269

    Article  Google Scholar 

  23. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprczak, Binary Alloy Phase Diagrams, ASM, Materials Park, 1990

    Google Scholar 

  24. M.V. Rudomekina, Y.D. Seropegin, A.V. Gribanov, and L.S. Gusei, Phase Equilibria in the Ti-Nb-Ge System at 1170 K, J. Less Common Metals, 1989, 147, p 239-247

    Article  Google Scholar 

  25. D.D. Liu, H.L. Yan, X.M. Yuan, Y.S. Chung, Y. Du, H.H. Xu, L.B. Liu, and P. Nash, Thermodynamic Modeling of the Ge-Ti System Supported by Key Experiment, Thermochim. Acta, 2011, 521, p 148-154

    Article  Google Scholar 

  26. T.A. Jain and C.R. Kao, Binary Compounds in the Ge-Ti System, J. Alloys Compd., 1999, 282, p 9-12

    Article  Google Scholar 

  27. R.W. Bittner, C. Colinet, J.C. Tedenac, and K.W. Richter, Revision of the Ge-Ti Phase Diagram and Structural Stability of the New Phase Ge4Ti5, J. Alloys Compd., 2013, 577, p 211-216

    Article  Google Scholar 

  28. J.J. Nickl, K.K. Schweitzer, and P. Luxenberg, Chemical Vapor Deposition of the Systems Titanium-Silicon-Carbon and Titanium-Germanium-Carbon, Proc. Int. Conf. Chem. Vap. Depos., 1972, 3, p 4-23

    Google Scholar 

  29. O.K. Belousov and I.I. Kornilov, The Solubility of Germanium System in the α-Titanium, lzv. Akad. Nauk SSSR Met., 1976, 1, p 168-169

    Google Scholar 

  30. W. Rossteutscher and K. Schubert, Strukturuntersuchungen in einigen T 4-5-B 4-5 systemen (Structural Studies of Pt-Ge system), Z. Metall. Trans., 1965, 56, p 813-822, in German

    Google Scholar 

  31. Z.Y. Xie, K.L. Lv, Y.H. Luo, H.S. Liu, and Z.P. Jin, Experimental Investigation of Phase Equilibria in Ge-Ni-Ti System, J. Alloys Compd., 2015, 645, p 344-351

    Article  Google Scholar 

  32. P. Villars and L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, 1991

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Major State Basic Research Development Program of China (Grant No. 2014CB6644002) and the Project of Innovation-Driven Plan in Central South University (no. 2015CX004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.S., Huang, X.M., Liu, J.L. et al. Experimental Investigation of Phase Equilibria in Ti–Zr–Ge System. J. Phase Equilib. Diffus. 39, 226–236 (2018). https://doi.org/10.1007/s11669-018-0625-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-018-0625-4

Keywords

Navigation