Skip to main content
Log in

Experimental Investigation of the Phase Relations of the Dy-Mn-As System at 773 K

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

The isothermal section of the Dy-Mn-As ternary system at 773 K has been investigated by using x-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. This isothermal section consists of 12 single-phase regions, 21 two-phase regions and 10 three-phase regions. The highest solid solubility of Dy in MnAs is about 0.65 at.%Dy, and that of Mn in DyAs is less than 0.79 at.%Mn. The maximum solubility of As in DyMn2 is less than 0.33 at.%As. No ternary compound was found to exist in this section at 773 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. N.K. Sun, W.B. Cui, D. Li, D.Y. Geng, F. Yang, and Z.D. Zhang, Giant Room-Temperature Magnetocaloric Effect in Mn1-xCrxAs, Appl. Phys. Lett., 2008, 92(7), p 072504

    Article  ADS  Google Scholar 

  2. W.B. Cui, W. Liu, X.H. Liu, S. Guo, Z. Han, X.G. Zhao, and Z.D. Zhang, Beneficial Effect of Minor Al Substitution on the Magnetocaloric Effect of Mn1−xAlxAs, Mater. Lett., 2009, 63(6), p 595-597

    Article  Google Scholar 

  3. D.L. Rocco, A. de Campos, A.M.G. Carvalho, L. Caron, A.A. Coelho, S. Gama et al., Ambient Pressure Colossal Magnetocaloric Effect in Mn1−xCuxAs Compounds, Appl. Phys. Lett., 2007, 90(24), p 242507

    Article  ADS  Google Scholar 

  4. M. Balli, D. Fruchart, D. Gignoux, C. Dupuis, A. Kedous-Lebouc, and R. Zach, Giant Magnetocaloric Effect in Mn1-x(Ti0.5V0.5)xAs: Experiments and Calculations, J. Appl. Phys., 2008, 103(10), p 103908

    Article  ADS  Google Scholar 

  5. X.X. Zhang, F.W. Wang, and G.H. Wen, Magnetic Entropy Change in RCoAl (R = Gd, Tb, Dy, and Ho) Compounds: Candidate Materials for Providing Magnetic Refrigeration in the Temperature Range 10 K to 100 K, J. Phys. Condens. Matter, 2001, 13(31), p L747

    Article  ADS  Google Scholar 

  6. K.A. Gschneidner, Jr., and V.K. Pecharsky, Rare Earths and Magnetic Refrigeration, J. Rare Earths, 2006, 24(6), p 641-647

    Article  Google Scholar 

  7. A.K. Pathak, I. Dubenko, S. Stadler, and N. Ali, Magnetic, Magnetocaloric, and Magnetotransport Properties of RCo1.8Mn0.2 (R = Er, Ho, Dy, and Tb) Compounds, J. Magn. Magn. Mater., 2011, 323(20), p 2436-2440

    Article  ADS  Google Scholar 

  8. H. Landolt and R. Börnstein, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Vol 3, Springer, Berlin, 1993

    Google Scholar 

  9. H.R. Kirchmayr and W. Lugscheider, Constitution of Binary Alloys of Gadolinium, Dysprosium, Holmium, and Erbium with Manganese, Z. Metallkd., 1967, 58, p 185

    Google Scholar 

  10. H. Okamoto, Dy-Mn (Dysprosium-Manganese), J. Phase Equilib. Diffus., 2011, 32, p 167

    Article  Google Scholar 

  11. H. Okamoto and T.B. Massalski, Binary Alloy Phase Diagrams Requiring Further Studies, J. Phase Equilib., 1994, 15(5), p 500

    Article  Google Scholar 

  12. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York, 1958

    Google Scholar 

  13. K.A. Gschneidner, Jr., and F.W. Calderwood, The Arsenic-Rare Earth Systems, Bull. Alloy Phase Diagr., 1986, 7, p 277

    Article  Google Scholar 

  14. R. Hanks and M.M. Faktor, Quantitative Application of Dynamic Differential Calorimetry. Part 2—Heats of Formation of the Group 3 A Arsenides, Trans. Faraday Soc., 1967, 63, p 1130

    Article  Google Scholar 

  15. Pierre Villars and Lauriston D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, Vol 2, American Society for Metals, Metals Park, OH, 1985

    Google Scholar 

  16. P. Villars, Pearson’s Handbook Desk Edition: Crystallographic Data for Intermetallic Phases, ASM International, Materials Park, OH, 1997

    Google Scholar 

  17. H. Landolt and R. Börnstein, Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, Springer, Berlin, 1993

    Google Scholar 

  18. M.F. Hagedorn and W. Jeitschko, Synthesis and Crystal Structure of Mn4As3 and Its Relation to Other Manganese Arsenides, J. Solid State Chem., 1995, 119(2), p 344-348

    Article  ADS  Google Scholar 

  19. L.Η. Dietrich, W. Jeitschko, and Μ.H. Möller, The Crystal Structure of Mn3As2 (I), Cryst. Mater., 1989, 190(1-4), p 259-270

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 50261002, 50661002 and 51161005) and National Basic Research Program of China (No. 2014CB643703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. F. Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Z.F., Yu, S.L., Xu, C.F. et al. Experimental Investigation of the Phase Relations of the Dy-Mn-As System at 773 K. J. Phase Equilib. Diffus. 36, 306–316 (2015). https://doi.org/10.1007/s11669-015-0384-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-015-0384-4

Keywords

Navigation