Skip to main content
Log in

Optimization of Keyway Broach Design

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This study presents an approach to developing a method to generate an optimized keyway broach tool design based on constant cutting forces. The obtained experimental data, as a result of the studies carried out by the method of photomechanics on models of optically sensitive material, allow us to recommend it in the practice of calculating keyway broaches. The results obtained on keyway broach models can be transferred to the real structure, which is made of tool material, taking into account the geometric and force similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Monday, Broaching (Machinery Publication, London, 1960)

    Google Scholar 

  2. E. Kokmeyer, Better Broaching Operations, 1st edn. (Society of Manufacturing Engineers, Dearborn, 1984)

    Google Scholar 

  3. W.R. Terry, K.W. Cutright, Computer aided design of a broaching process. Comput. Ind. Eng. 11(1–4), 576–580 (1986). https://doi.org/10.1016/0360-8352(86)90157-9

    Article  Google Scholar 

  4. W.R. Terry, R. Karni, Y.J. Huang, Concurrent tool and production system design for a surface broach cutting tool: a knowledge-based systems approach. Int. J. Prod. Res. 30(2), 219–240 (1992)

    Article  Google Scholar 

  5. V. Sajeev, L. Vijayaraghavan, U. Rao, An analysis of the effects of burnishing in internal broaching. Int. J. Mech. Eng. Educ. 28(2), 163–173 (2000). https://doi.org/10.7227/ijmee.28.2.5

    Article  Google Scholar 

  6. V. Sajeev, L. Vijayaraghavan, U. Rao, Effect of tool-work deflections on the shape of a broached hole. Int. J. Mech. Eng. Educ. 28(1), 88 (2000). https://doi.org/10.7227/ijmee.28.1.7

    Article  Google Scholar 

  7. D.A. Gonçalves, R.B. Schroeter, Modeling and simulation of the geometry and forces associated with the helical broaching process. Int. J. Adv. Manuf. Technol. 83(1–4), 205–215 (2015). https://doi.org/10.1007/s00170-015-7578-0

    Article  Google Scholar 

  8. P. Vogtel, F. Klocke, H. Puls, S. Buchkremer, D. Lung, Modelling of process forces in broaching Inconel 718. Procedia CIRP 8, 409–414 (2013). https://doi.org/10.1016/j.procir.2013.06.125

    Article  Google Scholar 

  9. G. Ortiz-de-Zarate, A. Madariaga, A. Garay, L. Azpitarte, I. Sacristan, M. Cuesta, P.J. Arrazola, Experimental and FEM analysis of surface integrity when broaching Ti64. Procedia CIRP 71, 466–471 (2018). https://doi.org/10.1016/j.procir.2018.05.033

    Article  Google Scholar 

  10. A. Axinte, N. Gindy, Tool condition monitoring in broaching. Wear 254(3–4), 370–382 (2003). https://doi.org/10.1016/s0043-1648(03)00003-6

    Article  CAS  Google Scholar 

  11. A. Axinte, F. Bound, J. Penny, N. Gindy, Broaching of Ti-6-4—detecting of workpiece surface anomalies on dovetail slots through process monitoring. CIRP Ann. Manuf. Technol. 54(1), 87–90 (2005). https://doi.org/10.1016/s0007-8506(07)60056-0

    Article  Google Scholar 

  12. L. Vijayaraghavan, R. Krishnamurthy, H. Chandrasekaran, Evaluation of stress and displacement of tool and workpiece on broaching. Int. J. Mach. Tool Des. Res. 21(3–4), 263–270 (1981). https://doi.org/10.1016/0020-7357(81)90023-8

    Article  Google Scholar 

  13. J.W. Sutherland, E.J. Salisbury, F.W. Hoge, A model for the cutting force system in the gear broaching process. Int. J. Mach. Tools Manuf. 37, 1409–1421 (1997). https://doi.org/10.1016/s0890-6955(97)00014-x

    Article  Google Scholar 

  14. A. Hosseini, H.A. Kishawy, On the optimized design of broaching tools. J. Manuf. Sci. Eng. 136(1), 011011 (2013). https://doi.org/10.1115/1.4025415

    Article  Google Scholar 

  15. D. Fabre, C. Bonnet, J. Rech, T. Mabrouki, Optimization of surface roughness in broaching. CIRP J. Manuf. Sci. Technol. 18, 115–127 (2017). https://doi.org/10.1016/j.cirpj.2016.10.006

    Article  Google Scholar 

  16. U. Kokturk, Optimization of Broaching Tool Design, M. Sc. thesis, Industrial Engineering, Sabanci University, Istanbul, Turkey, 2004

  17. P. Vogtel, F. Klocke, D. Lung, S. Terzi, Automatic broaching tool design by technological and geometrical optimization. Procedia CIRP 33, 496–501 (2015). https://doi.org/10.1016/j.procir.2015.06.061

    Article  Google Scholar 

  18. R. Kamath Cholpadi, A. Kuttan, Mechanistic force modeling for broaching process. Int. J. Manuf. Eng. (2014). https://doi.org/10.1155/2014/485712

    Article  Google Scholar 

  19. V. Sajeev, L. Vijayaraghavan, U.R.K. Rao, An analysis of the effects of burnishing in internal broaching. Int. J. Mech. Eng. Educ. 28(2), 163–173 (2000). https://doi.org/10.7227/ijmee.28.2.5

    Article  Google Scholar 

  20. D.A. Axinte, N. Gindy, K. Fox, I. Unanue, Process monitoring to assist the workpiece surface quality in machining. Int. J. Mach. Tools Manuf 44(10), 1091–1108 (2004). https://doi.org/10.1016/j.ijmachtools.2004.02.020

    Article  Google Scholar 

  21. D.A. Stephenson, J.S. Agapiou, Metal Cutting Theory and Practice (Marcel Dekker, New York, 1997)

    Google Scholar 

  22. R. Saravanan, P. Asokan, M. Sachidanandam, A multi-objective genetic algorithm (GA) approach for optimization of surface grinding operations. Int. J. Mach. Tools Manuf. 42(12), 1327–1334 (2002). https://doi.org/10.1016/s0890-6955(02)00074-3

    Article  Google Scholar 

  23. N. Alberti, G. Perrone, Multipass machining optimization by using fuzzy possibilistic programming and genetic algorithms. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 213(3), 261–273 (1999). https://doi.org/10.1243/0954405991516741

    Article  Google Scholar 

  24. Z. Khan, B. Prasad, T. Singh, Machining condition optimization by genetic algorithms and simulated annealing. Comput. Oper. Res. 24(7), 647–657 (1997). https://doi.org/10.1016/s0305-0548(96)00077-9

    Article  Google Scholar 

  25. Y.C. Shin, Y.S. Joo, Optimization of machining conditions with practical constraints. Int. J. Prod. Res. 30(12), 2907–2919 (1992). https://doi.org/10.1080/00207549208948198

    Article  Google Scholar 

  26. K. Challa, P.B. Berra, Automated planning and optimization of machining processes: a systems approach. Comput. Ind. Eng. 1(1), 35–46 (1976). https://doi.org/10.1016/0360-8352(76)90006-1

    Article  Google Scholar 

  27. S.S. Rao, L. Chen, Determination of optimal machining conditions: a coupled uncertainty model. J. Manuf. Sci. Eng. 122(1), 206 (2000). https://doi.org/10.1115/1.538898

    Article  Google Scholar 

  28. I. Erol, W.G. Ferrell, A methodology for selection problems with multiple, conflicting objectives and both qualitative and quantitative criteria. Int. J. Prod. Econ. 86(3), 187–199 (2003). https://doi.org/10.1016/s0925-5273(03)00049-5

    Article  Google Scholar 

  29. R. Ahmad, A.O. Hasan, H. Al-Rawashdeh, Photoelastic stress analysis of crankpin fillets of a crankshaft. J Fail. Anal. Prev. 19(2), 476–487 (2019). https://doi.org/10.1007/s11668-019-00618-w

    Article  Google Scholar 

  30. M.M. Leven, Epoxy resins for photoelastic use, in Photoelasticity, ed. by M.M. Frocht (Pergamon Press Inc, New York, 1963)

    Google Scholar 

  31. M.M. Frocht, Photoelasticity (Pergamon Press Inc, New York, 1963)

    Google Scholar 

  32. A. Freddi, G. Olmi, C. Luca, Experimental Stress Analysis for Materials and Structures, vol. 3 (Springer, Berlin, 2015). https://doi.org/10.1007/978-3-319-06086-6

    Book  Google Scholar 

  33. A.J. Muminovic, I. Saric, N. Repcic, Numerical analysis of stress concentration factors. Procedia Eng. 100, 707–713 (2015). https://doi.org/10.1016/j.proeng.2015.01.423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riad Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, R., Al-Rawashdeh, H. & Hasan, A.O. Optimization of Keyway Broach Design. J Fail. Anal. and Preven. 19, 688–697 (2019). https://doi.org/10.1007/s11668-019-00647-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-019-00647-5

Keywords

Navigation