Skip to main content

Advertisement

Log in

Methodologies for Assessing Risks of Accidents in Chemical Process Industries

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Chemical process industries often handle, store and transport chemicals which are flammable and/or toxic. Also, often, processes are employed which are carried out at high temperatures of pressures. These happenings constitute major hazards which carry the risk of serious accidents. The bigger the hazard, the greater is the risk associated with its existence. Despite the best intentions of the industries not to allow any accident to occur, major accidents keep occurring all over the world. This makes it necessary to develop newer methods with which the likelihood of accidents can be forecast and steps taken to prevent those accidents from occurring. This paper presents an overview of the already developed, and still evolving, methods for assessing risk of accidents in chemical process industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(adapted from Lees [109] and Pully [139])

Fig. 3

(adapted from [128])

Fig. 4

(adapted from [54])

Fig. 5

(adapted from CCPS [28, 29]

Fig. 6

(adapted from CCPS [30]

Fig. 7

Similar content being viewed by others

References

  1. T. Abbasi, S.A. Abbasi, The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. J. Hazard. Mater. 141(3), 489–519 (2007)

    Google Scholar 

  2. T. Abbasi, S.A. Abbasi, The expertise and the practice of loss prevention in the Indian process industry. Process Saf. Environ. Prot. 83(B5), 413–420 (2005)

    Google Scholar 

  3. T. Abbasi, V. Kumar, S.M. Tauseef, S.A. Abbasi, Spread rate of flammable liquids over flat and inclined porous surfaces. J. Chem. Health Saf. 25(5), 19–27 (2018). https://doi.org/10.1016/j.jchas.2018.02.004

    Google Scholar 

  4. T. Abbasi, H.J. Pasman, S.A. Abbasi, A scheme for the classification of explosions in the chemical process industry. J. Hazard. Mater. 174(1), 270–280 (2010)

    Google Scholar 

  5. T. Abbasi, S.M. Tauseef, R. Suganya, S.A. Abbasi, Types of accidents occurring in chemical process industries and approaches to their modeling. Int. J. Eng. Sci. Math. 6(7), 424–455 (2017)

    Google Scholar 

  6. N.A. Abrahamson, J.J. Bommer, Probability and uncertainty in seismic hazard analysis. Earthquake Spect. 21(2), 603–607 (2005)

    Google Scholar 

  7. S.A. Adedigba, F. Khan, M. Yang, Dynamic failure analysis of process systems using principal component analysis and Bayesian network. Ind. Eng. Chem. Res. 56(8), 2094–2106 (2017)

    Google Scholar 

  8. H. Agarwal, E.J. Renaud, L.E. Preston, D. Padmanabhan, Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliab. Eng. Syst. Saf. 85, 281–294 (2004)

    Google Scholar 

  9. B. Ale, L.J. Bellamy, R.M. Cooke, M. Duyvis, D. Kurowicka, P.H. Lin, O. Morales, A.L.C. Roelen, J. Spouge, Causal Model for Air Transport Safety-Final Report (Ministerie van Verkeer en Waterstraat, Directoraat-Generaal Luchtvaart en Maritieme zaken, 2009), p. 90

    Google Scholar 

  10. B. Ale, C. van Gulijk, A. Hanea, D. Hanea, P. Hudson, P.H. Lin, S. Sillem, Towards BBN based risk modelling of process plants. Saf. Sci. 69, 48–56 (2014)

    Google Scholar 

  11. M. Alló, M.L. Loureiro, Estimating a meta-damage regression model for large accidental oil spills. Ecol. Econ. 86, 167–175 (2013)

    Google Scholar 

  12. Å.S. Andersson, M. Tysklind, I. Fängmark, A method to relate chemical accident properties and expert judgements in order to derive useful information for the development of Environment-Accident Index. J. Hazard. Mater. 147(1–2), 524–533 (2007)

    Google Scholar 

  13. B. Ayyub, J.G. Klir, Uncertainty Modeling and Analysis in Engineering and the Sciences (Chapman & Hall, Espoo, 2006)

    Google Scholar 

  14. H. Bae, V.R. Grandhi, A.R. Canfield, An approximation approach for uncertainty quantification using evidence theory. Reliab. Eng. Syst. Saf. 86, 215–225 (2004)

    Google Scholar 

  15. P. Baybutt, A critique of the hazard and operability (HAZOP) study. J. Loss Prev. Process Ind. 33, 52–58 (2015)

    Google Scholar 

  16. L. Bendixen, J.K. O’Neill, Chemical plant risk assessment using HAZOP and fault tree methods. Plant Oper. Prog. 3, 179–184 (1984)

    Google Scholar 

  17. A. Bobbio, L. Portinale, M. Minichino, E. Ciancamerla, Improving the analysis of dependable systems by mapping FTs into Bayesian networks. J. Reliab. Eng. Syst. Saf. 71, 249–260 (2001)

    Google Scholar 

  18. H. Boudali, J. B. Dugan, A new Bayesian approach to solve dynamic FTs, in Proceedings of Reliability and Maintainability Symposium (RAMS’05), pp. 451–6 (2005)

  19. J.B. Bowles, C.E. Peláez, Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliab. Eng. Syst. Saf. 50, 203–213 (1995)

    Google Scholar 

  20. B. Bowonder, The bhopal accident. Technol. Forecast. Soc. Chang. 32(2), 169–182 (1987)

    Google Scholar 

  21. P. Bragatto, M. Monti, F. Giannini, S. Ansaldi, Exploiting process plant digital representation for risk analysis. J. Loss Prev. Process Ind. 20, 69–78 (2007)

    Google Scholar 

  22. M. Braglia, G. Fantoni, M. Frosolini, The house of reliability. Int. J. Quality Reliab. Manag. 24, 420–440 (2007)

    Google Scholar 

  23. M. Braglia, M. Frosolini, R. Montanari, Fuzzy TOPSIS approach for failure mode, effects and criticality analysis. Quality Reliab. Eng. Int. l 19, 425–443 (2003)

    Google Scholar 

  24. P. Bucci, J. Kirschenbaum, L.A. Mangan, T. Aldemir, C. Smith, T. Wood, Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability. Reliab. Eng. Syst. Saf. 93(11), 1616–1627 (2008)

    Google Scholar 

  25. A.J. Bugarn, S. Barro, Fuzzy reasoning supported by Petri nets. IEEE Trans. Fuzzy Syst. 2, 135–150 (1994)

    Google Scholar 

  26. T. Cao, A.C. Sanderson, Representation and analysis of uncertainty using fuzzy Petri nets. J. Intell. Fuzzy Syst. 3, 3–19 (1995)

    Google Scholar 

  27. CCPS, Guidelines for Chemical Process Quantitative Risk Analysis (Center for Chemical Process Safety, American Institute of Chemical Engineers, New York, 1992)

    Google Scholar 

  28. CCPS, Guidelines for Facility Siting and Layout (Center for Chemical Process Safety, AIChE, New York, 2003)

    Google Scholar 

  29. CCPS, Guidelines for Investigating Chemical Process Incidents, 2nd edn. (Center for Chemical Process Safety, American Institute of Chemical Engineers, New York, 2003)

    Google Scholar 

  30. Center for Chemical Process Safety (CCPS), Layer of Protection Analysis: Simplified Process Risk Assessment (Wiley, 2011)

  31. H. Chae, Y.H. Yoon, E.S. Yoon, Safety analysis using an expert system in chemical processes. Korean J. Chem. Eng. 11(3), 153–161 (1994)

    Google Scholar 

  32. CPS, Guidelines for Investigating Chemical Process Incidents, Center for Chemical Process Safety of the American Institute of Chemical Engineers. ISBN:0-8169-0555-X (2006)

  33. CCPS, Guidelines for Risk Based Process Safety (Center for Chemical Process Safety American Institute of Chemical Engineers, New York, 2007)

    Google Scholar 

  34. C.L. Chang, C.C. Wei, Y.H. Lee, Failure mode and effects analysis using fuzzy method and grey theory. Kybernetes 28, 1072–1080 (1999)

    Google Scholar 

  35. K.H. Chang, C.H. Cheng, Evaluating the risk of failure using the fuzzy OWA and DEMATEL method. J. Intell. Manuf. 22, 113–129 (2011)

    Google Scholar 

  36. S.H. Chang, J.Y. Park, M.K. Kim, The Monte-Carlo method without sorting for uncertainty propagation analysis in PRA. Reliab. Eng. 10(4), 233–243 (1985)

    Google Scholar 

  37. S.M. Chen, J.S. Ke, J.F. Chang, Knowledge representation using fuzzy Petri nets. IEEE Trans. Knowl. Data Eng. 2, 311–319 (1990)

    Google Scholar 

  38. Y. Cheng, Uncertainties in fault tree analysis. Tamkang J. Sci. Eng. 3, 23–29 (2000)

    Google Scholar 

  39. C.W. Cheng, H.Q. Yao, T.C. Wu, Applying data mining techniques to analyze the causes of major occupational accidents in the petrochemical industry. J. Loss Prev. Process Ind. 26(6), 1269–1278 (2013)

    Google Scholar 

  40. M. Cheraghi, A.E. Baladeh, N. Khakzad, A fuzzy multi-attribute HAZOP technique (FMA-HAZOP): application to gas wellhead facilities. Saf. Sci. 114, 12–22 (2019)

    Google Scholar 

  41. K.S. Chin, A. Chan, J.B. Yang, Development of a fuzzy FMEA based product design system. Int. J. Adv. Manuf. Technol. 36, 633–649 (2008)

    Google Scholar 

  42. K.S. Chin, Y.M. Wang, G.K.K. Poon, J.B. Yang, Failure mode and effects analysis using a group-based evidential reasoning approach. Comput. Oper. Res. 36, 1768–1779 (2009)

    Google Scholar 

  43. L.-P. Chung, C.-T. Chang, Petri-net models for comprehensive hazard analysis of MOCVD processes. Comput. Chem. Eng. 32, 356–371 (2011)

    Google Scholar 

  44. V. Cozzani, G. Antonioni, G. Landucci, A. Tugnoli, S. Bonvicini, G. Spadoni, Quantitative assessment of domino and NaTech scenarios in complex industrial areas. J. Loss Prev. Process Ind. 28, 10–22 (2014)

    Google Scholar 

  45. V. Cozzani, E. Salzano, The quantitative assessment of domino effects caused by overpressure: part I. Probit models. J. Hazard. Mater. 107(3), 67–80 (2004)

    Google Scholar 

  46. V. Cozzani, E. Salzano, The quantitative assessment of domino effect caused by overpressure: part II. Case studies. J. Hazard. Mater. 107(3), 81–94 (2004)

    Google Scholar 

  47. V. Cozzani, G. Antonioni, G. Spadoni, Quantitative assessment of domino scenarios by a GIS-based software tool. J. Loss Prev. Process Ind. 19(5), 463–477 (2006)

    Google Scholar 

  48. V. Cozzani, S. Bonvicini, G. Spadoni, S. Zanelli, Hazmat transport: a methodological framework for the risk analysis of marshalling yards. J. Hazard. Mater. 147, 412–423 (2007)

    Google Scholar 

  49. G.D. Creedy, Quantitative risk assessment: How realistic are those frequency assumptions? J. Loss Prev. Process Ind. 24(3), 203–207 (2011)

    Google Scholar 

  50. A.M. Dowell, T.R. Williams, Layer of protection analysis: generating scenarios automatically from HAZOP data. Process Saf. Prog. 24, 38–44 (2005)

    Google Scholar 

  51. J. Dunjó, V. Fthenakis, J.A. Vílchez, J. Arnaldos, J, Hazard and operability (HAZOP) analysis. a literature review. J. Hazard. Mater. 173(1–3), 19–32 (2010)

    Google Scholar 

  52. J. Dunjó Denti, New Trends for Conducting Hazard & Operability (Hazop) Studies in Continuous Chemical Processes (Universitat Politècnica de Catalunya, Barcelona, 2010)

    Google Scholar 

  53. D. Embrey, Using influence diagrams to analyse and predict failures in safety critical systems, in Proceedings of the 23rd ESReDA Seminar—Decision Analysis: Methodology and Applications for Safety of Transportation and Process Industries, Delft, The Netherlands, (2002 November)

  54. C.A. Ericson, Event tree analysis. Hazard Anal. Tech. Syst. Saf. 4, 223–234 (2005)

    Google Scholar 

  55. A. Falck, R. Flage, T. Aven, Risk assessment of oil and gas facilities during operational phase. Saf. Reliab. Complex Eng. Syst. ESREL 2015, 373 (2015)

    Google Scholar 

  56. R. Ferdous, F.I. Khan, B. Veitch, P. Amyotte, Methodology for computer aided fuzzy FT analysis. J. Process Saf. Environ. Prot. 87, 217–226 (2009)

    Google Scholar 

  57. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Fault and event tree analyses for process systems risk analysis: uncertainty handling formulations. Risk Anal. 31(1), 86–107 (2011)

    Google Scholar 

  58. R. Ferdous, F. Khan, R. Sadiq, P. Amyotte, B. Veitch, Analyzing system safety and risks under uncertainty using a bow-tie diagram: an innovative approach. Process Saf. Environ. Prot. 91(1–2), 1–18 (2013)

    Google Scholar 

  59. M. Ferjencik, Root cause analysis of an old accident in an explosives production plant. Safety Sci. 48(10), 1530–1544 (2010)

    Google Scholar 

  60. M. Ferjencik, An integrated approach to the analysis of incident causes. Saf. Sci. 49(6), 886–905 (2011)

    Google Scholar 

  61. M. Ferjencik, IPICA_Lite—Improvements to root cause analysis. Reliab. Eng. Syst. Safe. 131, 1–13 (2014)

    Google Scholar 

  62. S. Ferson, J. Hajagos, D. Berleant, J. Zhang, W.T. Tucker, L. Ginzburg, Dependence in Dempster–Shafer Theory and Probability Bounds Analysis (Sandia National Laboratories, Livermore, 2004)

    Google Scholar 

  63. R. Freeman, Simplified uncertainty analysis of layer of protection analysis results. Process Saf. Prog. 32, 351–360 (2013)

    Google Scholar 

  64. R.A. Freeman, “Uncertainty in LOPA studies, in Proceedings of Mary Kay O’Connor Process Safety Center International Symposium, October 25–27 (Texas A&M University, College Station, Texas, 2011), pp. 623–634

  65. R.A. Freeman, Quantifying LOPA uncertainty. Process Saf. Prog. 3, 240–247 (2012)

    Google Scholar 

  66. R.A. Freeman, R. Lee, T.P. McNamara, Plan HAZOP studies with an expert system. Chem. Eng. Prog. 88, 28–32 (1992)

    Google Scholar 

  67. M.L. Garg, S.I. Ahson, P.V. Gupta, A fuzzy Petri net for knowledge representation and reasoning. Inform. Process. Lett. 39, 165–171 (1991)

    Google Scholar 

  68. J.A.B. Geymar, N.F.F. Ebecken, Fault tree: a knowledge—engineering approach. IEEE Trans. Reliab. 44(1), 37–45 (1995)

    Google Scholar 

  69. T.L. Graves, M.S. Hamada, R. Klamann, A. Koehler, H.F. Martz, A fully Bayesian approach for combining multi-level information in multi-state FT quantification. J. Reliab. Eng. Syst. Saf. 92, 1476–1483 (2007)

    Google Scholar 

  70. M. Greenberg, C. Haas, A. Cox Jr., K. Lowrie, K. McComas, W. North, Ten most important accomplishments in risk analysis, 1980–2010. Risk Anal. Int. J. 32(5), 771–781 (2012)

    Google Scholar 

  71. C. Guo, F. Khan, S. Imtiaz, Risk assessment of process system considering dependencies. J. Loss Prev. Process Ind. 75, 83 (2018)

    Google Scholar 

  72. K. Hendrick, L. Benner Jr., Investigating Accidents with STEP (Marcel Dekker, New York, 1987). ISBN 0-8247-7510-4

    Google Scholar 

  73. I.A. Herrera, R. Woltjer, Comparing a multi-linear (STEP) and systemic (FRAM) method for accident analysis. Reliab. Eng. Syst. Saf. 95(12), 1269–1275 (2010)

    Google Scholar 

  74. J. Hu, L. Zhang, Z. Cai, Y. Wang, A. Wang, Fault propagation behavior study and root cause reasoning with dynamic Bayesian network based framework. Process Saf. Environ. Prot. 97, 25–36 (2015)

    Google Scholar 

  75. Y. Huang, G. Ma, J. Li, Grid-based risk mapping for gas explosion accidents by using Bayesian network method. J. Loss Prev. Process Ind. 48, 223–232 (2017)

    Google Scholar 

  76. F.V. Jensen, An Introduction to Bayesian Networks (Editions UCL Press, London, UK, 1996)

    Google Scholar 

  77. W.G. Johnson, The Management Oversight & Risk TreeMORT. SAN 821-2, U.S. Atomic Energy Commission, Division of Operational Safety (1973)

  78. W.G. Johnson, MORT Safety Assurance Systems (Marcel Dekker Inc, New York, 1980)

    Google Scholar 

  79. M. Kalantarnia, F. Khan, K. Hawboldt, Dynamic risk assessment using failure assessment and Bayesian theory. J. Loss Prev. Process Ind. 22(5), 600–606 (2009)

    Google Scholar 

  80. M. Kalantarnia, F. Khan, K. Hawboldt, Dynamic risk assessment using failure assessment and Bayesian theory. J. Loss Prev. Process Ind. 22, 600–606 (2009)

    Google Scholar 

  81. J. Kang, L. Guo, HAZOP analysis based on sensitivity evaluation. Saf. Sci. 88, 26–32 (2016)

    Google Scholar 

  82. P. Katsakiori, G. Sakellaropoulos, E. Manatakis, Towards an evaluation of accident investigation methods in terms of their alignment with accident causation models. Saf. Sci. 47(7), 1007–1015 (2009)

    Google Scholar 

  83. R. Kenarangui, Event-tree analysis by fuzzy probability. IEEE Trans. Reliab. 40, 112–124 (1991)

    Google Scholar 

  84. N. Khakzad, Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures. Reliab. Eng. Syst. Saf. 138, 263–272 (2015)

    Google Scholar 

  85. N. Khakzad, F. Khan, P. Amyotte, Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches. Reliab. Eng. Syst. Safe. 96(8), 925–932 (2011)

    Google Scholar 

  86. N. Khakzad, G. Reniers, R. Abbassi, F. Khan, Vulnerability analysis of process plants subject to domino effects. Reliab. Eng. Syst. Saf. 154, 127–136 (2016)

    Google Scholar 

  87. H.A. Khalil, A.H. Bhat, A.I. Yusra, Green composites from sustainable cellulose nanofibrils: a review. Carbohyd. Polym. 87(2), 963–979 (2012)

    Google Scholar 

  88. F.I. Khan, Knowledge-based expert system framework to conduct offshore process HAZOP study, in 2005 IEEE International Conference on Systems, Man and Cybernetics, October, Vol. 3. (IEEE, 2005), pp. 2274–2280

  89. F.I. Khan, S.A. Abbasi, Techniques and Methodologies for Risk Analysis in Chemical Process Industries (Discovery Publishing House, New Delhi, 1998), p. ix + 364

    Google Scholar 

  90. F.I. Khan, S.A. Abbasi, Analytical simulation and PROFAT II: a new methodology and a computer automated tool for fault tree analysis in chemical process industries. J. Hazard. Mater. 75(1), 1–27 (2000)

    Google Scholar 

  91. F.I. Khan, S.A. Abbasi, PROFAT: a tool for probabilistic risk assessment. Process Saf. Prog. AIChE 18, 42–49 (1999)

    Google Scholar 

  92. F.I. Khan, S.A. Abbasi, Mathematical model for HAZOP study time estimation. Journal of Loss Prevention in Process Industries 10, 249–257 (1997)

    Google Scholar 

  93. F.I. Khan, S.A. Abbasi, Risk analysis of a typical chemical industry using ORA procedure. J. Loss Prev. Process Ind. 14(1), 43–59 (2001)

    Google Scholar 

  94. F.I. Khan, A. Iqbal, N. Ramesh, S.A. Abbasi, SCAP: a new methodology for safety management based on feedback from credible accident-probabilistic fault tree analysis system. J. Hazard. Mater. 87(1–3), 23–56 (2001)

    Google Scholar 

  95. M.C. Kim, P.H. Seong, A computational method for probabilistic safety assessment of I&C systems and human operators in nuclear power plants. Reliab. Eng. Syst. Saf. 91, 580–593 (2006)

    Google Scholar 

  96. M.C. Kim, P.H. Seong, E. Hollnagel, A probabilistic approach for determining the control mode in CREAM. Reliab. Eng. Syst. Saf. 91, 191–199 (2006)

    Google Scholar 

  97. T.A. Kletz, Learning from Accidents (Routledge, London, 2001)

    Google Scholar 

  98. T. Kontogiannis, V. Leopoulos, N. Marmaras, A comparison of accident analysis techniques for safety-critical man machine systems. Int. J. Ind. Ergon. 25, 327–347 (2000)

    Google Scholar 

  99. J.M. Kościelny, M. Syfert, B. Fajdek, A. Kozak, The application of a graph of a process in HAZOP analysis in accident prevention system. J. Loss Prev. Process Ind. 50, 55–66 (2017)

    Google Scholar 

  100. M. Lampis, D. Andrews, Bayesian belief networks for system fault diagnostics. Int. J. Quality Reliab. Eng. 25, 409–426 (2009)

    Google Scholar 

  101. G. Landucci, F. Argenti, A. Tugnoli, V. Cozzani, Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire. Reliab. Eng. Syst. Saf. 143, 30–43 (2015)

    Google Scholar 

  102. E.J. Lauría, P.J. Duchessi, A Bayesian belief network for IT implementation decision support. Decis. Support Syst. 42(3), 1573–1588 (2006)

    Google Scholar 

  103. S.M. Lavasani, A. Zendegani, M. Celik, An extension to fuzzy fault tree analysis (FFTA) application in petrochemical process industry. Process Saf. Environ. Prot. 93, 75–88 (2015)

    Google Scholar 

  104. S.M.M. Lavasani, J. Wang, Z. Yang, J. Finlay, Application of MADM in a fuzzy environment for selecting the best barrier for offshore wells. Expert Syst. Appl. 39(3), 2466–2478 (2012)

    Google Scholar 

  105. H.G. Lawley, Size up plant hazards this Way. Hydrocarb. Process. 55, 247–261 (1976)

    Google Scholar 

  106. P.D. Lawley, Some chemical aspects of dose-response relationships in alkylation mutagenesis. Mutat. Res. Fundam. Mol. Mech. Mutagenesis 23(3), 283–295 (1974)

    Google Scholar 

  107. C. Lee, K.J. Lee, Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal. Reliab. Eng. Syst. Saf. 91, 515–532 (2006)

    Google Scholar 

  108. A. Lee, L. Lu, Petri net modeling for probabilistic safety assessment and its application in the air lock system of a CANDU nuclear power plant. Procedia Eng. 45, 11–20 (2012)

    Google Scholar 

  109. F. Lees, Lees’ Loss Prevention in the Process Industries: Hazard Identification, Assessment and Control (Butterworth-Heinemann, 2012)

  110. F.P. Lees, Lee’s loss prevention in the process industries: Hazard identification, assessment, and control, 3rd edn. (Elsevier, Oxford, UK, 2005)

    Google Scholar 

  111. N. Leveson, A new accident model for engineering safer systems. Saf. Sci. 42, 237–270 (2004)

    Google Scholar 

  112. G.S. Liang, M.J.J. Wang, Fuzzy fault-tree analysis using failure possibility. Microelectron. Reliab. 33(4), 583–597 (1993)

    Google Scholar 

  113. H.C. Liu, L. Liu, Q.H. Bian, Q.L. Lin, N. Dong, P.C. Xu, Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory. Expert Syst. Appl. 38, 4403–4415 (2011)

    Google Scholar 

  114. H.C. Liu, L. Liu, N. Liu, Risk evaluation approaches in failure mode and effects analysis: a literature review. Expert Syst. Appl. 40, 828–838 (2013)

    Google Scholar 

  115. Z. Liu, H. Li, P. Zhou, Towards timed fuzzy Petri net algorithms for chemical abnormality monitoring. Expert Syst. Appl. 38, 9724–9728 (2011)

    Google Scholar 

  116. A.D. Livingston, G. Jackson, K. Priestley, Root causes analysis: Literature review (Health and Safety Executive, ISBN, 2001), p. 0717619664

    Google Scholar 

  117. A.S. Markowski, M.S. Mannan, A. Bigoszewska, A. Fuzzy logic for process safety analysis. J. Loss Prev. Process Ind. 22, 695–702 (2009)

    Google Scholar 

  118. A.S. Markowski, A. Kotynia, “Bow-tie” model in layer of protection analysis. Process Saf. Environ. Prot. 89, 205–213 (2011)

    Google Scholar 

  119. A.S. Markowski, D. Siuta, Fuzzy logic approach for identifying representative accident scenarios. J. Loss Prev. Process Ind. 56, 414–423 (2018)

    Google Scholar 

  120. T.C. McKelvey, How to improve the effectiveness of hazard and operability analysis. IEEE Trans. Reliab. 37(2), 167–170 (1988)

    Google Scholar 

  121. D. Mercurioa, L. Podofillini, E. Zio, V.N. Dang, Identification and classification of dynamic event tree scenarios via possibilistic clustering: application to a steam generator tube rupture event. Accid. Anal. Prev. 41, 1180–1191 (2009)

    Google Scholar 

  122. J. Mogford, Fatal Accident Investigation Report, Isomerization Unit Explosion. Final Report, BP, Texas City, Texas, USA (2005)

  123. K. Mokhtari, J. Ren, C. Roberts, J. Wang, Application of a generic bow-tie based risk analysis framework on risk management of sea ports and offshore terminals. J. Hazard. Mater. 192(2), 465–475 (2011)

    Google Scholar 

  124. S. Montani, L. Portinale, A. Bobbio, D. Codetta-Raiteri, Automatically translating dynamic FTs into dynamic Bayesian networks by means of a software tool. in Proceedings of Reliability and Maintainability Symposium (RAMS’06), pp. 434–41 (2006)

  125. S. Montani, L. Portinale, A. Bobbio, D. Codetta-Raiteri, RADYBAN: a tool for reliability analysis of dynamic FTs through conversion into dynamic Bayesian networks. J. Reliab. Eng. Syst. Saf. 93, 922–932 (2008)

    Google Scholar 

  126. E.D. Mukhim, T. Abbasi, S.M. Tauseef, S.A. Abbasi, domino effect in chemical process industries triggered by overpressure—formulation of equipment-specific probits. Process Saf. Environ. Prot. 106, 263–273 (2017)

    Google Scholar 

  127. M.D. Myers, Qualitative Research in Business and Management (Sage, London, 2013)

    Google Scholar 

  128. B.P. Nepal, O.P. Yadav, L. Monplaisir, A. Murat, A framework for capturing and analyzing the failures due to system/component interactions. Quality Reliab. Eng. Int. 24, 265–289 (2008)

    Google Scholar 

  129. Z.S. Nivoliannitou, V.N. Leopoulos, M. Konstantinidou, Comparison of techniques for accident scenario analysis in hazardous systems. J. Loss Prev. Process Ind. 17, 467–475 (2004)

    Google Scholar 

  130. O. Nyvlt, M. Rausand, Dependencies in event trees analyzed by Petri nets. Reliab. Eng. Syst. Saf. 104, 45–57 (2012)

    Google Scholar 

  131. K. Øien, A framework for the establishment of organizational risk indicators. Reliab. Eng. Syst. Saf. 74, 147–168 (2001)

    Google Scholar 

  132. H. Ozog, Hazard identification, analysis and control: a systematic way to assess potential hazards helps promote safer design and operation of new and existing plants. Chem. Eng. 92, 161–170 (1985)

    Google Scholar 

  133. H. Ozog, L.M. Bendixen, Hazard identification and quantification: the most effective way to identify, quantify, and control risks is to combine a hazard and operability study with fault tree analysis. Chem. Eng. Prog. 83, 55–64 (1987)

    Google Scholar 

  134. L.B. Page, J.E. Perry, Direct-evaluation algorithms for fault-tree probabilities. Comput. Chem. Eng. 15(3), 157–169 (1991)

    Google Scholar 

  135. J.C. Parmar, F.P. Lees, The propagation of faults in process plants: hazard identification (Part I). Reliab. Eng. 17, 277–302 (1987)

    Google Scholar 

  136. H. Pasman, G. Reniers, Past, present and future of quantitative risk assessment (QRA) and the incentive it obtained from land-use planning (LUP). J. Loss Prev. Process Ind. 28, 2–9 (2014)

    Google Scholar 

  137. J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann Publishers Inc, San Francisco, USA, 1988)

    Google Scholar 

  138. R.L. Post, HazRop: an approach to combining HAZOP and RCM. Hydroc. Process. 80, 69–76 (2001)

    Google Scholar 

  139. A.S. Pully, Utilization and results of hazard and operability studies in a petroleum refinery. Process Saf. Prog. 12, 106–110 (1993)

    Google Scholar 

  140. Y. Qiao, N. Keren, M.S. Mannan, Utilization of accident databases and fuzzy sets to estimate frequency of HazMat transport accidents. J. Hazard. Mater. 167, 374–382 (2009)

    Google Scholar 

  141. P.M. Robinson, Gaussian semiparametric estimation of long range dependence. Annals Stat. 23, 1630–1661 (1995)

    Google Scholar 

  142. W. Røed, A. Mosleh, J.E. Vinnem, T. Aven, On the use of hybrid causal logic method in offshore risk analysis. Reliab. Eng. Syst. Saf. 94, 445–455 (2008)

    Google Scholar 

  143. T. Rosqvist, On Use of Experts Judgment in the Quantification of Risk Assessment. Dissertation for the degree of Doctor of Technology, Helsinki University of Technology (2003)

  144. M. Rothschild, Fault tree and layer of protection hybrid risk analysis. Process Saf Prog 23(3), 185–190 (2004)

    Google Scholar 

  145. R. Sadiq, E. Saint-Martin, Y. Kleiner, Predicting risk of water quality failures in distribution networks under uncertainties using fault-tree analysis. Urban Water J. 5, 287–304 (2008)

    Google Scholar 

  146. B. Sahin, Consistency control and expert consistency prioritization for FFTA by using extent analysis method of trapezoidal FAHP. Appl. Soft Comput. 56, 46–54 (2017)

    Google Scholar 

  147. N.R. Sankar, B.S. Prabhu, Modified approach for prioritization of failures in a system failure mode and effects analysis. Int. J. Quality Reliab. Manag. 18, 324–336 (2001)

    Google Scholar 

  148. R. Sauk, A.S. Markowski, F. Moskal, Application of the graph theory and matrix calculus for optimal HAZOP nodes order determination. J. Loss Prev. Process Ind. 35, 377–386 (2015)

    Google Scholar 

  149. D.L. Schurman, S.A. Fleger, Human factors in HAZOPs: guide words and parameters. Prof. Saf. 39, 32–34 (1994)

    Google Scholar 

  150. K. Sentz, S. Ferson, Combination of Evidence in Dempster–Shafer Theory, vol. 4015 (Sandia National Laboratories, Albuquerque, New Mexico, 2002)

    Google Scholar 

  151. S.M. Seyed-Hosseini, N. Safaei, M.J. Asgharpour, Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique. Reliab. Eng. Syst. Saf. 91, 872–881 (2006)

    Google Scholar 

  152. M. Shahrokhi, A. Bernard, Energy flow/barrier analysis, a novel view. European Annual (2009)

  153. C. Simon, P. Weber, E. Levrat, Bayesian networks and evidence theory to model complex systems reliability. J.0 Comput. 2, 33–43 (2007)

    Google Scholar 

  154. S. Sklet, Methods for accident investigation. Reliability, Safety, and Security Studies at NTNU, Trondheim. ISBN:8277061811 (2002)

  155. S. Sklet, Comparison of some selected methods for accident investigation. J. Hazard. Mater. 111(1), 29–37 (2004)

    Google Scholar 

  156. J. Spouge, A Guide to Quantitative Risk Assessment for Offshore Installations (CMPT Publication, Aberdeen, 1999)

    Google Scholar 

  157. R. Squillante Jr., D.J.S. Fo, N. Maruyama, F. Junqueira, L.A. Moscato, F.Y. Nakamoto, P.E. Miyagi, J. Okamoto Jr., Modeling accident scenarios from databases with missing data: a probabilistic approach for safety-related systems design. Saf. Sci. 104, 119–134 (2018)

    Google Scholar 

  158. D.H. Stamatis, Failure Mode and Effect Analysis: FMEA from Theory to Execution (ASQC Press, New York, 1995)

    Google Scholar 

  159. D. Straub, Natural hazards risk assessment using Bayesian networks. in Proceedings of the Ninth International Conference on Structural Safety and Reliability (ICOSSAR 05), Rome, Italy, pp. 19–23 (2005)

  160. A.E. Summers, Introduction to layers of protection analysis. J. Hazard. Mater. 104, 163–168 (2003)

    Google Scholar 

  161. O. Svenson, The accident evolution and barrier function (AEB) model applied to incident analysis in the processing industries. Risk Anal. 11(3), 499–507 (1991)

    Google Scholar 

  162. O. Svenson, Accident and incident analysis based on the accident evolution and barrier function (AEB) model. Cognit. Technol. Work 3(1), 42–52 (2001)

    Google Scholar 

  163. B. Thacker, L. Huyse, Probabilistic assessment on the basis of interval data, in 44th AIAA/ASME/ASCE/AHS Structures, Espoo, Finland (2003)

  164. W. Tian, T. Du, S. Mu, HAZOP analysis-based dynamic simulation and its application in chemical processes. Asia Pac. J. Chem. Eng. 10(6), 923–935 (2015)

    Google Scholar 

  165. J.G. Torres-Toledano, L.E. Sucar, Bayesian networks for reliability analysis of complex systems. Lect. Notes Comput. Sci. 1484, 195–206 (1998)

    Google Scholar 

  166. B. Tyler, B. Simmons, Hazop studies: knowing their limitations. Loss Prev. Bull. 4, 6–8 (1995)

    Google Scholar 

  167. B. Vahdani, M. Salimi, M. Charkhchian, A new FMEA method by integrating fuzzy belief structure and TOPSIS to improve risk evaluation process. Int. J. Adv. Manuf. Technol. 77(1–4), 357–368 (2015)

    Google Scholar 

  168. G.R. Van Sciver, Quantitative risk analysis in the chemical process industry. Reliab. Eng. Syst. Saf. 29(1), 55–68 (1990)

    Google Scholar 

  169. W. Vesely, F. Goldberg, N. Roberts, D. Haasl, Fault Tree Handbook. Technical Report NUREG-0492, Systems and Reliability Research Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission (1981)

  170. V. Villa, N. Paltrinieri, F. Khan, V. Cozzani, Towards dynamic risk analysis: A review of the risk assessment approach and its limitations in the chemical process industry. Safety Sci. 89, 77–93 (2016)

    Google Scholar 

  171. J.E. Vinnem, J.A. Hestad, J.T. Kvaløy, J.E. Skogdalen, Analysis of root causes of major hazard precursors (hydrocarbon leaks) in the Norwegian offshore petroleum industry. Reliab. Eng. Syst. Saf. 95(11), 1142–1153 (2010)

    Google Scholar 

  172. W.A. Wagenaar, J. van der Schrier, The goal, and how to get there. Saf. Sci. 26(1), 25–33 (1997)

    Google Scholar 

  173. S.M. Wang, T. Holden, C.C. Fan, G.P. Wilhelmij, An intelligent simulation architecture for hazard and operability analysis of large-scale process plant, in IEE Colloquium on Model Building Aids for Dynamic System Simulation, September (IET, 1991), pp. 8-1–8-5

  174. Y.F. Wang, M. Xie, K.S. Chin, X.J. Fu, Accident analysis model based on Bayesian Network and Evidential Reasoning approach. J. Loss Prev. Process Ind. 26, 10–21 (2013)

    Google Scholar 

  175. Y.M. Wang, K.S. Chin, G.K.K. Poon, J.B. Yang, Risk evaluation in failure mode and effects analysis using fuzzy weighted geometric mean. Expert Syst. Appl. 36, 1195–1207 (2009)

    Google Scholar 

  176. P. Weber, G. Medina-Oliva, C. Simon, B. Iung, Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Eng. Appl. Artif. Intell. 25, 671–682 (2012)

    Google Scholar 

  177. C. Wei, W.J. Rogers, M.S. Mannan, Layer of protection analysis for reactive chemical risk assessment. J. Hazard. Mater. 159, 19–24 (2008)

    Google Scholar 

  178. G. Weidl, A.L. Madsen, S. Israelson, Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes. Comput. Chem. Eng. 29, 1996–2009 (2005)

    Google Scholar 

  179. C.R. Wilcox, M.B. Ayyub. Uncertainty modeling of data and uncertainty propagation for risk studies, in IEEE (2003)

  180. A.M. Williamson, A.M. Feyer, Causes of accidents and the time of day. Work Stress 9(2–3), 158–164 (1995)

    Google Scholar 

  181. N.C. Xiao, H.Z. Huang, Y.F. Li, L.P. He, T.D. Jin, Multiple failure modes analysis and weighted risk priority number evaluation in FMEA. Eng. Fail. Anal. 18, 1162–1170 (2011)

    Google Scholar 

  182. K. Xu, L.C. Tang, M. Xie, S.L. Ho, M.L. Zhu, Fuzzy assessment of FMEA for engine systems. Reliab. Eng. Syst. Saf. 75, 17–29 (2002)

    Google Scholar 

  183. Z. Yang, S. Bonsall, J. Wang, Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA. IEEE Trans. Reliab. 57, 517–528 (2008)

    Google Scholar 

  184. M. Yazdi, S. Kabir, Fuzzy evidence theory and Bayesian networks for process systems risk analysis. Hum. Ecol. Risk Assess. Int. J. 38, 1–30 (2018)

    Google Scholar 

  185. M. Yazdi, E. Zarei, Uncertainty handling in the safety risk analysis: an integrated approach based on fuzzy fault tree analysis. J. Fail. Anal. Prev. 18(2), 392–404 (2018)

    Google Scholar 

  186. M. Yazdi, O. Korhan, S. Daneshvar, Application of fuzzy fault tree analysis based on modified fuzzy AHP and fuzzy TOPSIS for fire and explosion in the process industry. Int. J. Occup. Saf. Ergon. 9, 1–17 (2018)

    Google Scholar 

  187. J. Yllera, Modularization methods for evaluating fault tree of complex technical system. Eng Risk Hazard Assess. 2, 81–100 (1988)

    Google Scholar 

  188. X. You, F. Tonon, Event-tree analysis with imprecise probabilities. Risk Anal. 32, 330–344 (2012)

    Google Scholar 

  189. D. Yuhua, Y. Datao, Estimation of failure probability of oil and gas transmission pipelines by fuzzy FT analysis. J. Loss Prev. Process Ind. 18, 83–88 (2005)

    Google Scholar 

  190. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Google Scholar 

  191. F. Zammori, R. Gabbrielli, ANP/RPN: a multi criteria evaluation of the risk priority number. Quality Reliab. Eng. Int. 28, 85–104 (2011)

    Google Scholar 

  192. E. Zarei, A. Azadeh, M.M. Aliabadi, I. Mohammadfam, Dynamic safety risk modeling of process systems using Bayesian network. Process Saf. Prog. 36(4), 399–407 (2017)

    Google Scholar 

  193. E. Zarei, A. Azadeh, N. Khakzad, M.M. Aliabadi, I. Mohammadfam, Dynamic safety assessment of natural gas stations using Bayesian network. J. Hazard. Mater. 321, 830–840 (2017)

    Google Scholar 

  194. E. Zarei, N. Khakzad, V. Cozzani, G. Reniers, Safety analysis of process systems using Fuzzy Bayesian Network (FBN). J. Loss Prev. Process Ind. 57, 7–16 (2019)

    Google Scholar 

  195. L. Zhang, X. Wu, Y. Qin, M.J. Skibniewski, W. Liu, Towards a fuzzy Bayesian network based approach for safety risk analysis of tunnel-induced pipeline damage. Risk Anal. 36(2), 278–301 (2016)

    Google Scholar 

  196. M. Zhang, W. Song, Z. Chen, J. Wang, Risk assessment for fire and explosion accidents of steel oil tanks using improved AHP based on FTA. Process Saf. Prog. 35(3), 260–269 (2016)

    Google Scholar 

  197. Z.F. Zhang, X.N. Chu, Risk prioritization in failure mode and effects analysis under uncertainty. Expert Syst. Appl. 38, 206–214 (2011)

    Google Scholar 

  198. J. Zhou, G. Reniers, Petri-net based simulation analysis for emergency response to multiple simultaneous large-scale fires. J. Loss Prev. Process Ind. 40, 554–562 (2016)

    Google Scholar 

  199. J. Zhou, G. Reniers, Petri-net based cascading effect analysis of vapor cloud explosions. J. Loss Prev. Process Ind. 48, 118–125 (2017)

    Google Scholar 

  200. J. Zhou, G. Reniers, Analysis of emergency response actions for preventing fire-induced domino effects based on an approach of reversed fuzzy Petri-net. J. Loss Prev. Process Ind. 47, 169–173 (2017)

    Google Scholar 

Download references

Acknowledgments

SAA thanks the Council of Scientific and Industrial Research (CSIR), New Delhi, for the Emeritus Scientist grant (21(1034)/16/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Abbasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basheer, A., Tauseef, S.M., Abbasi, T. et al. Methodologies for Assessing Risks of Accidents in Chemical Process Industries. J Fail. Anal. and Preven. 19, 623–648 (2019). https://doi.org/10.1007/s11668-019-00642-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-019-00642-w

Keywords

Navigation