Skip to main content
Log in

A Finite Element Analysis for Evaluation of J-Integral in Plates Made of Functionally Graded Materials with a Semicircular Notch

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

This work introduces a numerical investigation using finite element method to evaluate the J-integral at crack tip in titanium boride (TiB)–titanium (Ti) ceramic–metal functionally graded materials plate with a semicircular notch at side subjected to different mechanical load conditions (mode I and mixed mode). Young’s modulus of the functionally graded material plate varies along the specimen width (notch radius direction r-FGM) with power-law and exponential-law functions. Further, the Poisson’s ratio is taken as a constant in normal direction to the hole with a power-law function. The relation of J-integral with functionally graded material plate parameters (i.e., power-law index, thickness of plate) and geometrical parameters (i.e., normalized crack length, notch radius ratio) is highlighted; these parameters must be optimized in order to improve the performance. The obtained results show that it requires estimating the length of the crack, the plate thickness, the notch root radius, the variation in the material properties of the FGM plate constituents and the crack direction that they have a significant influence on the J-integral at the crack tip, and the controlled it can be significantly reduce the J-integral. It is noticed also that in the mixed mode the J-integral is more affected than in mode I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Kawasaki, R. Watanabe, Thermal fracture behavior of metal/ceramic functionally graded materials. Eng. Fract. Mech. 69, 1713–1728 (2002)

    Article  Google Scholar 

  2. Y. Liu, C. Compson, M. Liu, Nanostructured and functionally graded cathodes for intermediate solid oxide fuel cells. J. Power Sources 138, 194–198 (2004)

    Article  CAS  Google Scholar 

  3. T. Nomura, H. Moriguchi, K. Tsuda, K. Isobe, A. Ikegaya, K. Moriyama, Material design method for the functionally graded cemented carbide tool. Int. J. Refract. Metals Hard Mater. 17, 397–404 (1999)

    Article  CAS  Google Scholar 

  4. F. Watari, A. Yokoyama, M. Omori, T. Hirai, H. Kondo, M. Uo, T. Kawasaki, Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos. Sci. Technol. 64, 893–908 (2004)

    Article  CAS  Google Scholar 

  5. J.R. Rice, Path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Article  Google Scholar 

  6. R.M. McMeeking, Finite deformation analysis of crack-tip opening in elastic–plastic materials and implications for fracture. J. Mech. Phys. Solids 25, 357–381 (1977)

    Article  CAS  Google Scholar 

  7. D. Carka, C.M. Landis, On the path-dependence of the J-integral near a stationary crack in an elastic–plastic material. J. Appl. Mech. 78(1–6), 011006 (2011)

    Article  Google Scholar 

  8. H. Liebowitz, J.S. Sandhu, J.D. Lee, F.C.M. Menandro, Computational fracture mechanics: research and application. Eng. Fract. Mech. 50, 653–670 (1995)

    Article  Google Scholar 

  9. K.B. Broberg, Critical review of some method in nonlinear fracture mechanics. Eng. Fract. Mech. 50, 157–164 (1995)

    Article  Google Scholar 

  10. R. Firmature, S. Rahman, Elastic–plastic analysis of off-center cracks in cylindrical structures. Eng. Fract. Mech. 66, 15–39 (2000)

    Article  Google Scholar 

  11. P.A. Allen, D.N. Wells, Interpolation methodology for elastic–plastic J-integral solutions for surface cracked plates in tension. Eng. Fract. Mech. 119, 173–201 (2014)

    Article  Google Scholar 

  12. D.H. Cho, H.B. Seo, Y.J. Kim, Y.S. Chang, M.J. Jhung, Y.H. Choi, Advances in J-integral estimation of circumferentially surface cracked pipes. Fatigue Fract. Eng. Mater. Struct. 34, 667–681 (2011)

    Article  Google Scholar 

  13. O. Pop, F. Dubois, J. Absi, J-integral evaluation in cracked wood specimen using the mark tracking method. Wood Sci. Technol. 47, 257–267 (2013)

    Article  CAS  Google Scholar 

  14. M. Kikuchi, H. Miyamoto, K. Machida, Y. Kitagawa, K. Chiba, On the 3 dimensional J integral: 2nd report, the J integral of the CT specimen in elastic–plastic state. Jpn. Soc. Mech. Eng. Ser. A 50(456), 1524–1530 (1984)

    Article  Google Scholar 

  15. M. Kikuchi, H. Miyamoto, M. Tanaka, J integral evaluation of CT specimen in elastic–plastic state. Bull. JSME Jpn. Soc. Mech. Eng. 27(233), 2365–2371 (1984)

    Article  Google Scholar 

  16. T.K. Hellen, On the method of virtual crack extensions. Int. J. Numer. Methods Eng. 9, 187–207 (1975)

    Article  Google Scholar 

  17. D.M. Parks, The virtual crack extension method for nonlinear material behavior. Comput. Methods Appl. Mech. Eng. 12, 353–364 (1977)

    Article  Google Scholar 

  18. L. Banks-Sills, R. Kopelman, On the computation of stress intensity factors for three-dimensional geometries with singular, twenty-seven-noded, distorted elements. Comput. Struct. 41(5), 981–986 (1991)

    Article  Google Scholar 

  19. P.W. Claydon, Maximum energy release rate distribution from a generalized 3D virtual crack extension method. Eng. Fract. Mech. 42, 961–969 (1992)

    Article  Google Scholar 

  20. F.Z. Li, C.F. Shih, A. Needleman, A comparison of methods for calculating energy release rates. Eng. Fract. Mech. 21, 405–421 (1985)

    Article  Google Scholar 

  21. C.F. Shih, B. Moran, T. Nakamura, Energy release rate along a three-dimensional crack front in a thermally stressed body. Int. J. Fract. 30, 79–102 (1986)

    Google Scholar 

  22. G.P. Nikishkov, S.N. Atluri, An equivalent domain integral method for computing crack-tip integral parameters in non-elastic, thermo-mechanical fracture. Eng. Fract. Mech. 26, 851–867 (1987)

    Article  Google Scholar 

  23. G.P. Nikishkov, S.N. Atluri, Three-dimensional elastic–plastic J-integral calculations for semielliptical surface cracks in a tensile plate. Eng. Fract. Mech. 29, 81–87 (1988)

    Article  Google Scholar 

  24. K.M. Shivakumar, I.S. Raju, An equivalent domain integral method for three-dimensional mixed-mode fracture problems. Eng. Fract. Mech. 42, 935–959 (1992)

    Article  Google Scholar 

  25. T. Nishioka, F. Stan, T. Fujimoto, Dynamic J integral and dynamic stress intensity factor distributions along naturally and dynamically propagating three dimensional fracture fronts. JSME Int. J. Ser. A 45(2), 523–537 (2002)

    Article  CAS  Google Scholar 

  26. T. Nishioka, F. Stan, A hybrid experimental-numerical study on the mechanics of three-dimensional dynamic fracture. CMES Comput. Model. Eng. Sci. 4, 119–139 (2003)

    Google Scholar 

  27. N. Sukmar, D.L. Chopp, B. Moran, Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Eng. Fract. Mech. 70, 29–48 (2003)

    Article  Google Scholar 

  28. G. Legrain, N. Moës, E. Verron, Stress analysis around crack tips in finite strain problems using the eXtended finite element method. Int. J. Numer. Methods Eng. 63, 290–314 (2005)

    Article  Google Scholar 

  29. F. Delale, F. Erdogan, The crack problem for a nonhomogeneous plane. ASME J. Appl. Mech. 50, 609–614 (1983)

    Article  Google Scholar 

  30. G. Bao, L. Wang, Multiple cracking in functionally graded ceramic/metal coatings. Int. J. Solids Struct. 32, 2853–2871 (1995)

    Article  Google Scholar 

  31. ABAQUS Finite element program, ABAQUS/Standard 6.9.1. Hibbit, Karlsson and Sorensen, Inc. Pawtuket, USA, 2008

  32. S. Gouasmi, A. Megueni, A.S. Bouchikhi, K. Zouggar, A. Sahli, On the reduction of stress concentration factor around a notch using a functionally graded layer. Mater. Res. 18(5), 971–977 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bouchikhi.

Appendix: User subroutine USDFLD for FGMs

Appendix: User subroutine USDFLD for FGMs

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouida, N., Bouchikhi, A.S., Megueni, A. et al. A Finite Element Analysis for Evaluation of J-Integral in Plates Made of Functionally Graded Materials with a Semicircular Notch. J Fail. Anal. and Preven. 18, 1573–1586 (2018). https://doi.org/10.1007/s11668-018-0558-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-018-0558-6

Keywords

Navigation