Advertisement

Journal of Failure Analysis and Prevention

, Volume 18, Issue 2, pp 233–240 | Cite as

Thermo-mechanical Fatigue Failure of a Low-Pressure Turbine Blade in a Turbofan Engine

  • R. K. Mishra
  • Nandi Vaishakhi
  • R. Raghavendra Bhatt
Case History---Peer-Reviewed
  • 186 Downloads

Abstract

This paper concerns a failure analysis case study of low-pressure turbine blades in an aero-engine. The operational condition of the engine was studied, and metallurgical investigations were carried out on two fractured blades. The failure in one blade originated at the leading edge, while in another it originated at the trailing edge then propagated in the forward direction. The crack propagation region showed mixed mode fractographic characteristics before the final failure. The mixed mode region was considered indicative of a thermo-mechanical fatigue propagation mode. Surface analysis of the blades indicated oxidation of variant thicknesses including oxide-filled intergranular cracks and grain boundary thickening beneath the oxide layer. It is considered more probable that the mechanism was more oxidation and fatigue dominated as opposed to creep-related.

Keywords

Thermo-mechanical fatigue Surface oxidation Gas turbine engine Turbine blade 

References

  1. 1.
    D.A. Boismier, Huseyin Sehitoglu, Thermo-mechanical fatigue of Mar-M247: part 1—experiments. J. Eng. Mater. Technol. 112(1), 68–79 (1990)CrossRefGoogle Scholar
  2. 2.
    E. Charkaluk et al., Fatigue design of structures under thermomechanical loadings. Fatigue Fractu. Eng. Mater. Struct. 25(12), 1199–1206 (2002)CrossRefGoogle Scholar
  3. 3.
    M.M. Shenoy et al., Thermomechanical fatigue behavior of a directionally solidified Ni-base superalloy. J. Eng. Mater. Technol. 127(3), 325–336 (2005)CrossRefGoogle Scholar
  4. 4.
    C. Halászi, C. Gaier, H. Dannbauer, Fatigue life prediction of thermo-mechanically loaded engine components. 11th European automotive congress, Budapest, 2007Google Scholar
  5. 5.
    M. Riedler et al., Lifetime simulation of thermo-mechanically loaded components. Meccanica 42(1), 47–59 (2007)CrossRefGoogle Scholar
  6. 6.
    B.A. Cowles, High cycle fatigue in aircraft gas turbines—an industry perspective. Int. J. Fract. 80, 147–163 (1996)CrossRefGoogle Scholar
  7. 7.
    O. Hakan et al. An energy-based method for uni-axial fatigue life calculation, in ASME Turbo Expo 2009: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2009Google Scholar
  8. 8.
    E. Poursaeidi, M. Aieneravaie, M.R. Mohammadi, Failure analysis of a second stage blade in a gas turbine engine. J. Eng. Fail. Anal. 15(8), 1111–1129 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Hour, B.J. Wicks, R.A. Antoniou, An investigation of fatigue failures of turbine blades in a gas turbine engine by mechanical analysis. J. Eng. Fail. Anal. 9(2), 201–211 (2002)CrossRefGoogle Scholar
  10. 10.
    S. Suresh, Fatigue of Materials, 2nd edn. (Cambridge University Press, Cambridge, UK, 2003), pp. 256–257Google Scholar
  11. 11.
    C.B. Meher-Homji, G. Gabriles, Gas turbine blade failures-causes, avoidance and trouble shooting, in Proceedings of 27th Turbomachinery Symposium, 1995Google Scholar
  12. 12.
    T.N. Mehdi et al., Failure analysis of gas turbine blades, in Proceedings of the 2008 IAJC-IJME International Conference, ISBN 978-1-60643-379-9Google Scholar
  13. 13.
    H. Cohen, G.F.C. Rogers, H.I.H. Saravanamuttoo, Gas turbine theory (Wiley, New York, 1996)Google Scholar
  14. 14.
    R.K. Mishra, K. Srinivasan, Failure of low-pressure turbine blades in military turbofan engines: causes and remedies. J. Fail. Anal. Prev. 16(4), 622–628 (2016)CrossRefGoogle Scholar
  15. 15.
    R.K. Mishra, J. Thomas, K. Srinivasan, N. Vaisakhi, R. Bhat, Investigation of LP turbine blade failure in a low bypass turbofan engine. J. Fail. Anal. Prev. 14(2), 160–166 (2014).  https://doi.org/10.1007/s11668-014-9793-7 CrossRefGoogle Scholar
  16. 16.
    R.K. Mishra, J. Thomas, K. Srinivasan, V. Nandi, R.R. Bhatt, Failure analysis of an un-cooled turbine blade in an aero gas turbine engine. Eng. Fail. Anal. 79, 836–844 (2017)Google Scholar
  17. 17.
    G. Thomas, J. Bressers, D. Raynor, Low-cycle fatigue and life prediction methods, in High Temperature Alloys for Gas Turbines, ed. by R. Brunetaud (D. Riedel Publishing Co., Netherlands, 1982), pp. 291–317Google Scholar
  18. 18.
    Z.W. Huang et al., Thermomechanical fatigue behavior and life prediction of a cast nickel-based superalloy. Mater. Sci. Eng., A 432(1), 308–316 (2006)CrossRefGoogle Scholar
  19. 19.
    R.B. Ross, Metallic Materials Specification Handbook (Springer, Berlin, 2013)Google Scholar
  20. 20.
    G.F. Vander Voort, S.R. Lampman, B.R. Sanders, G.J. Anton, C. Polakowski, J. Kinson, K. Muldoon, S.D. Henry, W.W. Scott Jr., ASM Handbook, vol. 9. Metallography and Microstructures (2004), pp. 44073–0002Google Scholar
  21. 21.
    S.K. Bhaumik et al., Failure of a low pressure turbine rotor blade of an aeroengine. Eng. Fail. Anal. 13(8), 1202–1219 (2006)CrossRefGoogle Scholar
  22. 22.
    J.A. Bannantine, J.J. Comer, J.L. Handrock, Fundamental of Metal fatigue Analysis (Prentice Hall Inc, Englewood Cliffs, NJ, 1990), pp. 40–87Google Scholar
  23. 23.
    R.K. Mishra, J. Thomas, K. Srinivasan, N. Vaishakhi, R.R. Bhatt, Investigation of HP turbine blade failure in a military turbofan engine. Int. J. Turbo Jet Engines (2015) doi: 10.1515/tjj-2015-0049 ISSN (Online) 2191-0332, ISSN (Print) 0334-0082Google Scholar
  24. 24.
    H.L. Bernstein, T.S. Grant, R.C. McClung, J.M. Allen, Prediction of thermal-mechanical fatigue life for gas turbine blades in electric power generation, in Thermomechanical Fatigue Behavior of Materials (ASTM International, 1993)Google Scholar
  25. 25.
    J.L. Malpertu, L. Remy, Thermomechanical fatigue behavior of a superalloy, in Low Cycle Fatigue. ASTM International, 1988Google Scholar
  26. 26.
    R.W. Neu, Huseyin Sehitoglu, Thermomechanical fatigue, oxidation, and creep: Part I. Damage mechanisms. Metall. Mater. Trans. A 20(9), 1755–1767 (1989)CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • R. K. Mishra
    • 1
  • Nandi Vaishakhi
    • 2
  • R. Raghavendra Bhatt
    • 2
  1. 1.Centre for Military Airworthiness and CertificationBangaloreIndia
  2. 2.Central Material Processing LaboratoryHindustan Aeronautics LimitedBangaloreIndia

Personalised recommendations