Journal of Failure Analysis and Prevention

, Volume 17, Issue 6, pp 1260–1267 | Cite as

Ballistic Impact Performance Study on Thermoset and Thermoplastic Composites

  • A. Sivagnana Sundaram
  • Akshay Anil Eranezhuth
  • K. V. V. R. Krishna
  • P. Karthic Kumar
  • V. Sivakumar
Technical Article---Peer-Reviewed
  • 149 Downloads

Abstract

Ballistic impact-resistant materials are of interest for the past few decades. Ballistic impact is a high-velocity impact where the target material is perforated by the projectile, such as a bullet hitting on a surface. In this study, the effect of ballistic impact on thermoset composites, Kevlar–Epoxy, Carbon–Epoxy, Glass–Epoxy, and thermoplastic composite, Carbon–Polyetheretherketone, was done. Projectile residual velocity and projectile penetration depth were used to quantify the effectiveness of the composite material to resist perforation. The simulation study was done on ABAQUS-6.13. The study included preliminary fiber orientation studies and selection of the best performing composite with the most effective fiber orientation. Further, the selection of the best performing target material was done by varying target thickness and projectile velocity. In this study, high-performance Carbon–Polyetheretherketone composite showed the most impact resistance.

Keywords

Ballistic impact Thermoplastic Thermoset ABAQUS Polyetheretherketone 

List of symbols

E

Young’s modulus for an isotropic material

Ν

Poisson’s ratio for an isotropic material

E11

Young’s modulus in direction 1

E22

Young’s modulus in direction 2

E33

Young’s modulus in direction 3

G12

Shear modulus on plane 1-2

G13

Shear modulus on plane 1-3

G23

Shear modulus on plane 2-3

ν12

Poisson’s ratio on plane 1-2

ν13

Poisson’s ratio on plane 1-3

ν23

Poisson’s ratio on plane 2-3

Ρ

Density of the material

G1t

Longitudinal tensile fracture energy

G1c

Longitudinal compressive fracture energy

G2t

Transverse tensile fracture energy

G2c

Transverse compressive fracture energy

σij

Stress components in i-j direction

XT

Allowable tensile strength in X-direction

YT

Allowable tensile strength in Y-direction

XC

Allowable compressive strength in X-direction

YC

Allowable compressive strength in Y-direction

S12

Allowable shear strength in plane 1-2

S23

Allowable shear strength in plane 2-3

δ0 eq

Initial equivalent displacement for a point which fulfills initiation criterion for a particular mode

δfeq

Displacement in a particular failure mode at which complete damage of the material occurs

δeq

Displacement of the material at any given time

D

Damage variable at any particular mode

dmax

Upper bound to all damage variables at a material point

References

  1. 1.
    Y.C. Lee, R.S. Porter, Crystallization of polyetheretherketone (PEEK) in carbon fiber composites. Polym. Eng. Sci. 26(9), 633–639 (1985). (in English) CrossRefGoogle Scholar
  2. 2.
    N.K. Naik, P. Shrirao, B.C.K. Reddy, Ballistic impact behaviour of woven fabric composites: formulation. Int. J. Impact Eng. 32, 1521–1552 (2006)CrossRefGoogle Scholar
  3. 3.
    K.S. Pandya, C.V.S. Kumar, N.S. Nair, P.S. Patil, N.K. Naik, Analytical and experimental studies on ballistic impact behavior of 2D woven fabric composites. Int. J. Damage Mechan. pp. 1–41 (2014)Google Scholar
  4. 4.
    Rahul S. Sikarwar, R. Velmurugan, Ballistic impact on glass/epoxy composite laminates. Def. Sci. J. 64(4), 393–399 (2014)CrossRefGoogle Scholar
  5. 5.
    M.A.G. Silva, C. Cismasiu, C.G. Chiorean, Numerical simulation of ballistic impact on composite laminates. Int. J. Impact Eng. 31, 289–306 (2005)CrossRefGoogle Scholar
  6. 6.
    Z. Husaini, Mixed mode fracture behavior of an aluminum alloy A6061 investigated by using compact tension shear specimens. Int. J. Technol. 7(3), 456–462 (2016)CrossRefGoogle Scholar
  7. 7.
    V. Sivakumar, G. Bharath Kumar, Ambati Gautham, Crack initiation study on aircraft composite rib with semi-elliptical surface flaw. J. Fail. Anal. Prev. 15(6), 906–914 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Yoshimura, T. Okabe, M. Yamada, Damage simulation of CFRP laminates under high velocity projectile impact, in Proceedings of 18 th International Conference on Composite Materials (2011)Google Scholar
  9. 9.
    Z. Hashin, Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)CrossRefGoogle Scholar
  10. 10.
    Dassault Systems Inc., Abaqus Analysis User’s Manual-Volume III: Materials, (Dassault Systems, U.S.A, 2007) p. (19.3.3) 1–6Google Scholar
  11. 11.
    L.J. Hart-Smith, A new approach to fibrous composite laminate strength prediction, Conference on Fibrous Composites in Structural Design, (vol. 2) (1989) pp. 663–693Google Scholar
  12. 12.
    S.E. Yamada, C.T. Sun, Analysis of laminate strength and its distribution. J. Compos. Mater. 12, 275–284 (1978)CrossRefGoogle Scholar
  13. 13.
    F. Paris, A study of failure criteria of fibrous composite materials, NASA, (2001) pp. 30–34Google Scholar
  14. 14.
    Dassault Systems Inc., Simulation of the ballistic perforation of aluminium plates with ABAQUS/Explicit, ABAQUS technology brief (2012)Google Scholar
  15. 15.
    H. Kasano, Impact perforation of orthotropic and quasi-isotropic CFRP laminates by a steel ball projectile. Adv. Compos. Mater. 10(4), 309–318 (2001)CrossRefGoogle Scholar
  16. 16.
    M. Rathnasabapathy, A.P. Mouritz, A.C. Orifici, Numerical investigation of fibre-metal laminates subject to impact damage, in Proceedings of 18 th International Conference on Composite Materials (2011)Google Scholar
  17. 17.
    P.K. Sinha, Composite Materials and Structures, Kharagpur: I. I. T. Kharagpur, (2012) http://www.ae.iitkgp.ernet.in/ebooks/chapter4.htmlE-Books. Accessed 5 Jan, 2017
  18. 18.
    J. Pederson, Finite element analysis of carbon fiber composite ripping using ABAQUS, MSc., Clemson University (2006)Google Scholar
  19. 19.
    P.H. Chen, S. Xu, Prediction of low velocity impact damage in carbon/epoxy laminates. Procedia Eng. 67, 489–496 (2013)CrossRefGoogle Scholar
  20. 20.
    M.K. Dubey, P.B. Prajwal, Numerical analysis of kevlar–epoxy composite plate subjected to ballistic impact. Int. J. Mech. Eng. 41(1), 1117–1122 (2013)Google Scholar
  21. 21.
    C.-C.M. Ma, C.-L. Lee, M.-J. Chang, N.-H. Tai, Effect of physical aging on the toughness of carbon fiber-reinforced poly(ether ether ketone) and poly(pheny1ene sulfide) composites. Polym. Compos. 13(6), 441–447 (1992)CrossRefGoogle Scholar
  22. 22.
    A.J. Smiley, R.B. Pipes, Rate sensitivity of mode II interlaminar fracture toughness in graphite/epoxy and graphite/PEEK composite materials. Compos. Sci. Technol. 29(1), 1–15 (1987)CrossRefGoogle Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • A. Sivagnana Sundaram
    • 1
  • Akshay Anil Eranezhuth
    • 1
  • K. V. V. R. Krishna
    • 1
  • P. Karthic Kumar
    • 1
  • V. Sivakumar
    • 1
  1. 1.Department of Aerospace Engineering, Amrita School of EngineeringAmrita Vishwa Vidyapeetham, Amrita UniversityCoimbatoreIndia

Personalised recommendations