Skip to main content
Log in

Finite Element Analysis of an Aircraft Wing Leading Edge Made of GLARE Material for Structural Integrity

  • Technical Article---Peer-Reviewed
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

The present paper characterizes the structure of 3D model of an aircraft wing leading edge of a passenger aircraft considering GLARE laminates as one of the candidate materials through finite element analysis. The investigation is carried out on different types of GLARE configurations and the results of finite element analysis are well compared analytically with benchmark tests to demonstrate the performance of the modeling technique adopted. The GLARE laminate materials are found suitable for their application in the wing leading edge with some reservation on GLARE 3/2 and GLARE 4/3 for Al alloy 2024-T3 thickness, between 0.2 and 0.4 mm. The finite element approach is able to predict the mechanical behavior of structural elements fast enough so that the results can be incorporated into normal design iteration processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Thorpe, Fatalities and destroyed civil aircraft due to bird strikes, 1912–2002, in International Bird Strike Committee, 26th Meeting (Warsaw, 2003)

  2. R.K. Mishra, S.I. Ahmed, K. Srinivasan, Investigation of a bird strike incident of a military gas turbine engine. J. Fail. Anal. Prev. 13(6), 666–672 (2013). doi:10.1007/s11668-013-9744-8

    Article  Google Scholar 

  3. S. Heimbs, Bird strike simulations on composite aircraft structures, in SIMULIA Customer Conference (Barcelona, 2011)

  4. C. Niu, Airframe Structural Design: Practical Design Information and Data on Aircraft Structures (Conmilit Press, Hong Kong, 1988)

    Google Scholar 

  5. T.H.G. Megson, Aircraft Structures for Engineering Students (Elsevier, Amsterdam, 2012)

    Google Scholar 

  6. M. Mukhopadhyay, Mechanics of Composite Materials and Structures (Universities press, Hyderabad, 2005)

    Google Scholar 

  7. L.B. Vogelesang, A. Vlot, Development of fibre metal laminates for advanced aerospace structures. J. Mater. Process. Technol. 103(1), 1–5 (2000)

    Article  Google Scholar 

  8. R.J. Gettens, G.L. Stout, Painting Materials: A Short Encyclopaedia (Courier Corporation, 1966)

  9. G. Wu, J.-M. Yang, The mechanical behavior of GLARE laminates for aircraft structures. JOM 57(1), 72–79 (2005)

    Article  Google Scholar 

  10. J.B. Young, J.G.N. Landry, V.N. Cavoulacos, Crack growth and residual strength characteristics of two grades of glass-reinforced aluminium ‘Glare’. Compos. Struct. 27(4), 457–469 (1994)

    Article  Google Scholar 

  11. B.P. Shetty, S. Reddy, R.K. Mishra, Numerical analysis of bird impact on glass-reinforced leading edge of an aircraft wing. J. Fail. Anal. Prev. (2017). doi:10.1007/s11668-017-0306-3

    Google Scholar 

  12. L.J. Clancy, Aerodynamics (Halsted Press, Sydney, 1975)

    Google Scholar 

  13. R.T. Jones, Wing Theory (Princeton University Press, Princeton, 2014)

    Google Scholar 

  14. M.H. Dickinson, K.G. Gotz, Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 174(1), 45–64 (1993)

    Google Scholar 

  15. Shubham. Agarwal, Priyank. Kumar, Numerical investigation of flow field and effect of varying vortex generator location on wing performance. Am. J. Fluid Dyn. 6(1), 11–19 (2016)

    Google Scholar 

  16. W. Shyy et al., Aerodynamics of Low Reynolds Number Flyers, vol. 22 (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  17. M.L. Averill, Simulation Modeling and Analysis, 4th edn. (Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2008)

    Google Scholar 

  18. R.M. Pinkerton, The variation with Reynolds number of pressure distribution over an airfoil section, in NACA Report No. 613 (National Advisory Committee for Aeronautics, 1937)

  19. E.N. Jacobs, K.E. Ward, R.M. Pinkerton, The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel, NACA-TR-460, PB-177874 (1933)

  20. P. Iaccarino, A. Langella, G. Caprino, A simplified model to predict the tensile and shear stress-strain behavior of fiberglass/aluminum laminates. Compos. Sci. Technol. 67, 1784–1793 (2007)

    Article  Google Scholar 

  21. H.W. Nam, W. Hwang, K.S. Han, Stacking sequence design of fiber-metal laminate for maximum strength. J. Compos. Mater. 35(18), 1654–1683 (2001)

    Article  Google Scholar 

  22. F. Rastellini et al., Composite materials non-linear modelling for long fibre-reinforced laminates: continuum basis, computational aspects and validations. Comput. Struct. 86(9), 879–896 (2008)

    Article  Google Scholar 

  23. C.-H. Lin, M.-H.R. Jen, Analysis of a laminated anisotropic plate by Chebyshev collocation method. Compos. Part B 36, 155–169 (2005)

    Article  Google Scholar 

  24. G.R. Liu, X. Han, K.Y. Lam, An inverse procedure for determination of material constants. Comput. Methods Appl. Mech. Eng. 191, 3543–3554 (2002)

    Article  Google Scholar 

  25. A.K. Onkar, C.S. Upadhyay, D. Yadav, Probabilistic failure of laminated composite plate using the stochastic finite element method. Compos. Struct. 77, 79–91 (2007)

    Article  Google Scholar 

  26. A.M. Gadade, A. Lal, B.N. Singh, Finite element implementation of Puck’s failure criterion for failure analysis of laminated plate subjected to biaxial loadings. Aerosp. Sci. Technol. 55, 227–241 (2016)

    Article  Google Scholar 

  27. H. Debski, J. Jonak, Failure analysis of thin-walled composite channel section columns. Compos. Struct. 132, 567–574 (2015)

    Article  Google Scholar 

  28. M. Hagenbeck, Characterization of Fiber Metal Laminates Under Thermomechanical Loadings. GLARE Data Hand Book, Doctoral Thesis (2005)

  29. G. Wu, J.-M. Yang, Analytical modeling and numerical simulation of the non-linear deformation of hybrid fiber metal laminates. Model. Simul. Mater. Sci. Eng. 13, 413–425 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, B.P., Reddy, S. & Mishra, R.K. Finite Element Analysis of an Aircraft Wing Leading Edge Made of GLARE Material for Structural Integrity. J Fail. Anal. and Preven. 17, 948–954 (2017). https://doi.org/10.1007/s11668-017-0331-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-017-0331-2

Keywords

Navigation