Advertisement

Journal of Failure Analysis and Prevention

, Volume 17, Issue 5, pp 890–904 | Cite as

Effect of Sandblasting on Tensile Properties, Hardness and Fracture Resistance of a Line Pipe Steel Used in Algeria for Oil Transport

  • O. Bouledroua
  • M. Hadj Meliani
  • Z. Azari
  • A. Sorour
  • N. Merah
  • G. Pluvinage
Technical Article---Peer-Reviewed

Abstract

Transport of oil and gas through pipelines in the harsh conditions of the Algerian desert, results in erosion of the pipeline materials. Erosion is a mechanical process that causes a loss of wall thickness, damage and residual stresses on the surface of a pipe due to shocks between sand particles and structure surface. Damage manifests by spalling craters of different shapes and depths. The evaluation of tensile properties and hardness after sandblasting for different durations has been performed on API 5L X70 pipeline steel. Particular attention has been paid to fracture resistance after sandblasting to provide the necessary data for defect assessment, specially the effect of sandblasting on the Material Failure Master Curve (MFMC). The results demonstrated that the sandblasting has slightly increased the yield stress, the ultimate strength and the fracture toughness and, at the same time, had an adverse effect on elongation, young’s modulus, hardness and thickness of the tested pipeline.

Keywords

API 5L X70 steel Erosion Sandblasting Tensile strength Hardness 

References

  1. 1.
    R.J.K. Wood, T.F. Jones, Investigations of sand-water induced erosive wear of AISI 304L stainless steel pipes by pilot-scale and laboratory-scale testing. Wear 255, 206–218 (2003)CrossRefGoogle Scholar
  2. 2.
    X. Hu, A. Neville, CO2 erosion–corrosion of pipeline steel (API X65) in oil and gas conditions a systematic approach. Wear 267(11), 2027–2032 (2009)CrossRefGoogle Scholar
  3. 3.
    S. Hattori, E. Nakao, Cavitation erosion mechanisms and quantitative evaluation based on erosion particles. Wear 249, 839–845 (2002)CrossRefGoogle Scholar
  4. 4.
    Suyitno, B. Arifvianto, T.D. Widodo, M. Mahardika, P. Dewo, U.A. Salim, Effect of cold working and sandblasting on the microhardness, tensile strength and corrosion resistance of AISI 316L stainless steel. Int. J. Miner. Metall. Mater. 19(12), 1093 (2012)CrossRefGoogle Scholar
  5. 5.
    A. Alhussein, J. Capelle, J. Gilgert, S. Dominiak, Z. Azari, Influence of sandblasting and hydrogen on tensile and fatigue properties of pipeline API 5L X52 steel’. Int. J. Hydrog. energy 36, 2291–2301 (2011)CrossRefGoogle Scholar
  6. 6.
    A. Alhussein, J. Capelle, J. Gilgert, A. Tidu, S. Hariri, Z. Azari, Static, dynamic and fatigue characteristics of the pipeline API 5L X52 steel after sandblasting’. Eng. Fail. Anal. 27, 1–15 (2013)CrossRefGoogle Scholar
  7. 7.
    P.C. Okonkwo, R.A. Shakoor, E. Ahmed, A.M.A. Mohamed, Erosive wear performance of API X42 pipeline steel. Eng. Fail. Anal. 60, 86–95 (2016)CrossRefGoogle Scholar
  8. 8.
    D. Lopez, J.P. Congote, J.R. Cano, A.P. Toro, A.P. Tschiptschin, Effect of particle velocity and impact angle on the corrosion–erosion of AISI 304 and AISI 420 stainless steels. Wear 259, 118–124 (2005)CrossRefGoogle Scholar
  9. 9.
    M. Aminul Islam, Z.N. Farhat, E.M. Ahmed, A. Alfantazi, Erosion enhanced corrosion and corrosion enhanced erosion of API X70 pipeline steel. Wear 302, 1592 (2013)CrossRefGoogle Scholar
  10. 10.
    Z.A. Majid, R. Mohsin, Multiple failures of API 5L X42 natural gas pipeline. Eng. Fail. Anal. 31, 421–429 (2013)CrossRefGoogle Scholar
  11. 11.
    I. Finnie, G.R. Stevick, J.R. Ridgely, The influence of impingement angle on the erosion of ductile metals by angular abrasive particles. Wear 152(1), 91–98 (1992)CrossRefGoogle Scholar
  12. 12.
    R.K. Chintapalli, A. Mestra, F.G. Marro, M. Anglada, Effect of sandblasting and residual stress on strength of zirconia for restorative dentistry applications. J. Mech. Behav. Biomed. Mater. 29, 126–137 (2014)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    ISO 15614, Specification and Qualification of Welding Procedures for Metallic MaterialsWelding Procedure TestPart 5: Arc Welding of Titanium, Zirconium and Their Alloys (2004)Google Scholar
  15. 15.
    ASTM, G119-09, Standard Guide for Determining Synergism Between Wear and Corrosion, Annual Book of ASTM Standards, Vol 03.02 (ASTM International, West Conshohocken, 2009)Google Scholar
  16. 16.
    NF EN 10045-1, Essai de flexion par choc sur éprouvette Charpy, partie 1: Méthode d’essai, Association Française de Normalisation (AFNOR, 1990)Google Scholar
  17. 17.
    ASTM E92-82(2003)e2, Standard Test Method for Vickers Hardness of Metallic Materials (Withdrawn 2010) (ASTM International, West Conshohocken 2003), www.astm.org
  18. 18.
    J. Capelle, Etude de la nocivité d’un défaut de type éraflure sur une conduite destinée au transport de gaz naturel soumise à une pression d’hydrogène, Thèse de doctorat, Laboratoire de Fiabilité Mécanique, LFM, Ecole d’Ingénieur de Metz–ENIM-, France, 2008Google Scholar
  19. 19.
    M. Hadj Meliani, G. Pluvinage, Y.G. Matvienko, Two parameter fracture criterion (Kρ-Tef) derived from notch fracture mechanics. Int. J. Fract. 167, 173–182 (2011)CrossRefGoogle Scholar
  20. 20.
    G. Pluvinage, Fracture and fatigue emanating from stress concentrators (Springer, Netherlands, 2003)Google Scholar
  21. 21.
    M. Hadj Meliani, Y.G. Matvienko, G. Pluvinage, Corrosion defect assessment on pipes using limit analysis and notch fracture mechanics. Eng. Fail. Anal. 18, 271–283 (2011)CrossRefGoogle Scholar
  22. 22.
    T. Nateche, M. Hadj Meliani, S.M.A. Khan, Y.G. Matvienko, N. Merah, G. Pluvinage, Residual harmfulness of a defect after repairing by a composite patch. Eng. Fail. Anal. 48, 166–173 (2015)CrossRefGoogle Scholar
  23. 23.
    A. El-Azzizi, M. Hadj Meliani, A. Khelil, G. Pluvinage, Y.G. Matvienko, The master failure curve of pipe steels and crack paths in connection with hydrogen embrittlement. Int. J. Hydrog. Energy 40, 2295–2302 (2015)CrossRefGoogle Scholar
  24. 24.
    O. Bouledroua, M.O. Mbereick, M. Hadj Meliani, Qualification d’un acier API 5L X70: etude experimentale et validation numerique. Nat. Technol. A Sci. Fondam. Eng. 13, 34–39 (2015)Google Scholar
  25. 25.
    Y.M. Kim et al., Effects of molybdenum and vanadium addition on tensile and charpy impact properties of API X70 linepipe steels. Metall. Mater. Trans. A 38(8), 1731–1742 (2007)CrossRefGoogle Scholar
  26. 26.
    T. Bellahcene, Etude de la nocivité des defaults dans les canalisations sous environnement hydrogène, Doctoral Thesis, Mouloud Mammeri University of Tizi-Ouzou, Algeria, 2012.Google Scholar
  27. 27.
    Y.I. Oka, H. Ohnogi, T. Hosokawa, M. Matsumura, The impact angle dependence of erosion damage caused by solid particle impact. Wear 203–204, 573 (1997)CrossRefGoogle Scholar
  28. 28.
    C.T. Morrison, R.O. Scattergood, J.L. Routbort, Erosion of 304 stainless steel. Wear 111, 1 (1986)CrossRefGoogle Scholar
  29. 29.
    G.L. Sheldon, I. Finnie, On the ductile behavior of nominally brittle materials during erosive cutting. J. Eng. Ind. 88, 387 (1965)CrossRefGoogle Scholar
  30. 30.
    I. Finnie, G.R. Stevick, J.R. Ridgely, The influence of impingement angle on the erosion of ductile metals by angular abrasive particles. Wear 152, 91–98 (1992)CrossRefGoogle Scholar
  31. 31.
    M.L. Williams, J. Appl. Mech. 24, 109–114 (1957)Google Scholar
  32. 32.
    M. Hadj Meliani, O. Bouledroua, A. Alhussein, Y.G. Matvienko, G. Pluvinage, Some aspects of sandblasting and hydrogen on the material master failure Curve in engineering fracture mechanics. Anales de Mecánica de la Fractura 32, 94–103 (2015)Google Scholar

Copyright information

© ASM International 2017

Authors and Affiliations

  • O. Bouledroua
    • 1
  • M. Hadj Meliani
    • 1
    • 2
  • Z. Azari
    • 2
  • A. Sorour
    • 3
  • N. Merah
    • 4
  • G. Pluvinage
    • 2
  1. 1.LPTPMHassiba BenBouali University of ChlefChlefAlgeria
  2. 2.LaBPS-ENIMIPaul Verlaine University of MetzMetzFrance
  3. 3.Center of Research Excellence in Corrosion (CoRE-C)King Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  4. 4.Mechanical DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations